Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints

动态输运模型和状态约束控制问题的不连续伽辽金方法的发展

基本信息

  • 批准号:
    1217563
  • 负责人:
  • 金额:
    $ 7.33万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-11-10 至 2014-07-31
  • 项目状态:
    已结题

项目摘要

The objective of this project is to develop and analyze novel discontinuous Galerkin (DG) methods for solving partial differential equations arising from various application areas. The DG method is a class of finite element methods using completely discontinuous piecewise polynomial space for the numerical solution and the test functions. Those robust, compact, locally conservative methods can treat arbitrarily unstructured meshes and are ideal for hp-adaptive strategies. The good properties of the scheme call for further research in areas that are traditionally not solved by DG methods. In this grant proposal, the PI plans to conduct research in the following directions: (1) a positivity-preserving DG method for solving the kinetic equations, including the Boltzmann equations and Vlasov equations, (2) application of the proposed method to solar cell/semiconductor device simulations and plasma physics, (3) a novel DG solver for the Hamilton-Jacobi equations and its applications in control problems with state constraints. The proposed activity lies between algorithm development, analysis and applications. Developing robust, high-order accurate, cost-efficient numerical algorithms for kinetic models and control problem is very challenging, not only because of the high dimensionality of such models, but also because of the fact that a deep understanding of the underlying physics is required. The eventual goal is to produce solvers that are computationally efficient and suit the need for applications. The PI's work arises from the computational demand of real world applications. Many ideas developed in this proposal will have straightforward applications and impacts in semiconductor device simulations, high-efficiency fuel cell modeling, control problems and plasma physics. The PI actively interacts with students and faculty members in mathematics, physics, electrical engineering and chemistry departments. In addition, the PI will integrate the project with the training of graduate students in order to communicate in a broader context.
本项目的目的是发展和分析新的不连续伽辽金(DG)方法来求解不同应用领域的偏微分方程。DG法是一类利用完全不连续分段多项式空间求解数值解和测试函数的有限元方法。这些鲁棒、紧凑、局部保守的方法可以处理任意非结构化网格,是hp自适应策略的理想选择。该方案的良好性能要求在传统的DG方法无法解决的领域进行进一步的研究。在此资助申请中,PI计划在以下方向进行研究:(1)求解动力学方程的保正DG方法,包括Boltzmann方程和Vlasov方程;(2)将所提出的方法应用于太阳能电池/半导体器件模拟和等离子体物理;(3)Hamilton-Jacobi方程的新型DG求解器及其在状态约束控制问题中的应用。提议的活动介于算法开发、分析和应用之间。为动力学模型和控制问题开发鲁棒、高阶精确、经济高效的数值算法是非常具有挑战性的,这不仅是因为这些模型的高维性,还因为需要对底层物理有深刻的理解。最终目标是产生计算效率高且适合应用程序需要的求解器。PI的工作源于现实世界应用程序的计算需求。本提案中提出的许多想法将在半导体器件模拟、高效燃料电池建模、控制问题和等离子体物理方面有直接的应用和影响。PI积极与数学、物理、电子工程和化学系的学生和教师互动。此外,项目负责人将把该项目与研究生的培训结合起来,以便在更广泛的背景下进行交流。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingda Cheng其他文献

Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems
无限均匀恒星系统一维Vlasov-Poisson方程的数值研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingda Cheng;I. Gamba
  • 通讯作者:
    I. Gamba
Energy Stable Nodal Discontinuous Galerkin Methods for Nonlinear Maxwell's Equations in Multi-dimensions
  • DOI:
    https://doi.org/10.1007/s10915-021-01651-4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Maohui Lyu;Vrushali A. Bokil;Yingda Cheng;Fengyan Li
  • 通讯作者:
    Fengyan Li
Kraus is king: High-order completely positive and trace preserving (CPTP) low rank method for the Lindblad master equation
克劳斯是王者:用于林德布拉德主方程的高阶完全正且保迹(CPTP)低秩方法
  • DOI:
    10.1016/j.jcp.2025.114036
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Daniel Appelö;Yingda Cheng
  • 通讯作者:
    Yingda Cheng
An adaptive high-order piecewise polynomial based sparse grid collocation method with applications
基于自适应高阶分段多项式的稀疏网格配置方法及其应用
  • DOI:
    10.1016/j.jcp.2020.109770
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhanjing Tao;Yan Jiang;Yingda Cheng
  • 通讯作者:
    Yingda Cheng
Discontinuous Galerkin methods for the Boltzmann‐Poisson systems in semiconductor device simulations
半导体器件模拟中玻尔兹曼-泊松系统的不连续伽辽金方法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingda Cheng;I. Gamba;A. Majorana;Chi
  • 通讯作者:
    Chi

Yingda Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingda Cheng', 18)}}的其他基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2011838
  • 财政年份:
    2020
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
  • 批准号:
    1720023
  • 财政年份:
    2017
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
CAREER: Development of Discontinuous Galerkin Methods for Kinetic Equations in High Dimensions
职业:高维动力学方程不连续伽辽金方法的发展
  • 批准号:
    1453661
  • 财政年份:
    2015
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Continuing Grant
Developing Energy-Conserving Deterministic Solvers for Kinetic Electromagnetic Plasma Simulations
开发用于动力学电磁等离子体模拟的节能确定性求解器
  • 批准号:
    1318186
  • 财政年份:
    2013
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
  • 批准号:
    1016001
  • 财政年份:
    2010
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant

相似国自然基金

具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
  • 批准号:
    2309670
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Analysis of hybridized discontinuous Galerkin methods for the miscible displacement problem
混相驱替问题的混合间断伽辽金法分析
  • 批准号:
    568008-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Postdoctoral Fellowships
Runge-Kutta Discontinuous Galerkin Methods for Convection-Dominated Systems with Compact Stencils
用于具有紧凑模板的对流主导系统的龙格-库塔不连续伽辽金方法
  • 批准号:
    2208391
  • 财政年份:
    2022
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2208231
  • 财政年份:
    2022
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
  • 批准号:
    RGPIN-2017-04581
  • 财政年份:
    2022
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Discovery Grants Program - Individual
Concurrent hpk-Mesh Adaptation and Shape Optimization of Complex Geometries through an Adjoint-Based Discontinuous Petrov-Galerkin Isogeometric Analysis
通过基于伴随的不连续 Petrov-Galerkin 等几何分析并行 hpk 网格自适应和复杂几何形状优化
  • 批准号:
    RGPIN-2019-04791
  • 财政年份:
    2022
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Discovery Grants Program - Individual
Efficient Hybridizable Discontinuous Galerkin Methods for Phase Field Fluid Models
用于相场流体模型的高效可杂交不连续伽辽金方法
  • 批准号:
    2310340
  • 财政年份:
    2022
  • 资助金额:
    $ 7.33万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了