CAREER: Development of Discontinuous Galerkin Methods for Kinetic Equations in High Dimensions
职业:高维动力学方程不连续伽辽金方法的发展
基本信息
- 批准号:1453661
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-09-15 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Kinetic equations arise as fundamental models in many applications such as rarefied gas dynamics, plasma physics, nuclear engineering, semiconductor device design, traffic networking, and swarming. Due to the high-dimensionality of such models, conventional numerical partial differential equation (PDE) solvers will incur prohibitive computational cost, limiting their applications to real-world problems. This research project aims at addressing this issue by developing discontinuous Galerkin (DG) methods by the sparse grid approach. The resulting schemes enjoy the excellent properties that the traditional DG methods offer, while still being able to achieve high-order accuracy with a significant reduction in the required degrees of freedom. The research will have direct impact on the efficient and robust computations of kinetic equations and on other application areas involving high-dimensional PDEs. The research plan is complemented by educational and outreach activities involving the training of undergraduates, graduate students, and postdoctoral associates, and fostering collaborations among female researchers in computational mathematics. The research plan consists of several coherent projects, ranging from algorithm design, analysis, and implementation to application. In particular, the investigator plans to perform detailed studies of sparse tensor product polynomial spaces and to construct DG methods on sparse grids for model equations. The methods will be further developed for kinetic equations with attention to numerical challenges specific to Vlasov and Boltzmann equations. The PI will also develop similar numerical schemes for PDEs arising from areas such as optimal control and mathematical finance. Theoretical issues including stability, conservation, and error estimates, and computational issues including efficient linear solvers, adaptivity, and parallel implementations will be explored. The educational goals of this project are to develop a pipeline for the recruitment, retention, and early research exposure of undergraduate students, to continue integrated training and mentoring of graduate students and postdocs, and to promote collaborations and build a network of support for early career female researchers. Undergraduates, graduate students, and postdocs will be directly involved in every aspect of the proposed research. Summer research and career development workshops at Michigan State University will be established to promote research collaborations and build a community of support for early career female researchers.
在稀薄气体动力学、等离子体物理、核工程、半导体器件设计、交通网络和蜂群等许多应用中,动力学方程都是基本模型。由于这些模型的高维性,传统的数值偏微分方程(PDE)求解方法将产生令人望而却步的计算成本,限制了它们在现实世界问题中的应用。本研究项目旨在通过稀疏网格方法开发不连续伽辽金(DG)方法来解决这一问题。由此产生的方案享有传统DG方法提供的优良特性,同时仍然能够实现高阶精度,所需自由度显着降低。该研究将对动力学方程的高效鲁棒计算以及其他涉及高维偏微分方程的应用领域产生直接影响。该研究计划还包括教育和推广活动,包括对本科生、研究生和博士后的培训,以及促进女性研究人员在计算数学方面的合作。研究计划由几个连贯的项目组成,从算法设计、分析、实现到应用。特别是,研究者计划对稀疏张量积多项式空间进行详细的研究,并在模型方程的稀疏网格上构建DG方法。该方法将进一步发展动力学方程,并注意Vlasov和Boltzmann方程特有的数值挑战。PI还将为最优控制和数学金融等领域产生的pde制定类似的数值方案。理论问题包括稳定性、守恒和误差估计,计算问题包括有效的线性求解器、自适应和并行实现将被探索。该项目的教育目标是建立一个招收、保留和早期研究本科生的渠道,继续对研究生和博士后进行综合培训和指导,并促进合作,建立一个支持早期职业女性研究人员的网络。本科生、研究生和博士后将直接参与拟议研究的各个方面。密歇根州立大学将设立夏季研究和职业发展研讨会,以促进研究合作,并建立一个支持早期职业女性研究人员的社区。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yingda Cheng其他文献
Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems
无限均匀恒星系统一维Vlasov-Poisson方程的数值研究
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Yingda Cheng;I. Gamba - 通讯作者:
I. Gamba
Energy Stable Nodal Discontinuous Galerkin Methods for Nonlinear Maxwell's Equations in Multi-dimensions
- DOI:
https://doi.org/10.1007/s10915-021-01651-4 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Maohui Lyu;Vrushali A. Bokil;Yingda Cheng;Fengyan Li - 通讯作者:
Fengyan Li
Kraus is king: High-order completely positive and trace preserving (CPTP) low rank method for the Lindblad master equation
克劳斯是王者:用于林德布拉德主方程的高阶完全正且保迹(CPTP)低秩方法
- DOI:
10.1016/j.jcp.2025.114036 - 发表时间:
2025-08-01 - 期刊:
- 影响因子:3.800
- 作者:
Daniel Appelö;Yingda Cheng - 通讯作者:
Yingda Cheng
An adaptive high-order piecewise polynomial based sparse grid collocation method with applications
基于自适应高阶分段多项式的稀疏网格配置方法及其应用
- DOI:
10.1016/j.jcp.2020.109770 - 发表时间:
2019-12 - 期刊:
- 影响因子:0
- 作者:
Zhanjing Tao;Yan Jiang;Yingda Cheng - 通讯作者:
Yingda Cheng
Discontinuous Galerkin methods for the Boltzmann‐Poisson systems in semiconductor device simulations
半导体器件模拟中玻尔兹曼-泊松系统的不连续伽辽金方法
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Yingda Cheng;I. Gamba;A. Majorana;Chi - 通讯作者:
Chi
Yingda Cheng的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yingda Cheng', 18)}}的其他基金
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2011838 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
- 批准号:
1720023 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Developing Energy-Conserving Deterministic Solvers for Kinetic Electromagnetic Plasma Simulations
开发用于动力学电磁等离子体模拟的节能确定性求解器
- 批准号:
1318186 - 财政年份:2013
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
- 批准号:
1217563 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
- 批准号:
1016001 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
水稻边界发育缺陷突变体abnormal boundary development(abd)的基因克隆与功能分析
- 批准号:32070202
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
Development of a Linear Stochastic Model for Wind Field Reconstruction from Limited Measurement Data
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2404521 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of slip-flow theory with discontinuous boundary data and its applications to self-propelled particles
不连续边界数据滑流理论的发展及其在自驱动粒子中的应用
- 批准号:
22K03924 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
- 批准号:
2011838 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of a method of moment based on discontinuous Galerkin method and Hdiv inner products
基于间断伽辽金法和Hdiv内积的矩量法的开发
- 批准号:
15K13418 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A new development of mathematical theory of Discontinuous Galerkin FEM
间断伽辽金有限元数学理论的新发展
- 批准号:
15H03635 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of superconvergent hybridizable discontinuous Galerkin methods and mixed methods for Korteweg-de Vries type equations
超收敛杂化间断伽辽金方法和 Korteweg-de Vries 型方程混合方法的发展
- 批准号:
1419029 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Development of the hybridized discontinuous method and its mathematical analysis
混合间断法的发展及其数学分析
- 批准号:
26800089 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
- 批准号:
1217563 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
- 批准号:
1016001 - 财政年份:2010
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CAREER: Development and Applications of Discontinuous Galerkin Methods
职业:间断伽辽金方法的开发和应用
- 批准号:
0847241 - 财政年份:2009
- 资助金额:
$ 40万 - 项目类别:
Standard Grant