Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas

等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展

基本信息

  • 批准号:
    2011838
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

This project aims at designing efficient numerical schemes for simulating complex plasma phenomena. Plasma is a state of matter similar to gas in which a certain portion of the particles is ionized. Understanding the complex behaviors of plasmas has led to important advances in areas ranging from space physics, fusion energy, to high-power microwave generation and large scale particle accelerators. There is strong need for laying out mathematical and algorithmic foundations for the design of efficient numerical methods so that we can advance basic research in plasma simulations. The algorithms developed in this project have the potential to provide high fidelity simulations in plasma physics with manageable computational cost and will have applications and impacts in multiscale simulations in fusion devices. The principal investigator (PI) will organize special events at professional meetings and workshops to promote the participation of female researchers. This project provides research training opportunities for graduate students. The objective of the project is to make significant advances on the design and analysis of a class of numerical methods called adaptive sparse grid (aSG) discontinuous Galerkin (DG) methods. The methods incorporate high order accurate DG solver that excels at transport simulations and the dimension reduction technique by aSG approach. The aim of this proposal is to advance the algorithmic foundations of the schemes for time-dependent PDEs, and push them onto the broader arena of multiscale simulations and applications for fusion science. The PI will investigate several fundamental issues including the analysis of CFL conditions, development of multiscale time stepping, postprocessing and hybrid aSG schemes. For a class of multiscale kinetic problems bridging kinetic and fluid models, by utilizing the multiresolution offered in the aSG-DG framework, the research will take advantage of both multiscale simulation tools and multiresolution on hierarchically defined meshes to achieve acceleration in computations. The schemes will be applied to simulations of runaway electrons in tokamak devices.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
本计画旨在设计有效的数值格式来模拟复杂的电浆现象。等离子体是一种类似于气体的物质状态,其中一定部分的粒子被电离。 了解等离子体的复杂行为导致了从空间物理、聚变能到高功率微波产生和大规模粒子加速器等领域的重要进展。 有强烈的需要奠定了数学和算法的基础,设计有效的数值方法,使我们能够推进等离子体模拟的基础研究。在这个项目中开发的算法有可能提供高保真度的等离子体物理模拟与可管理的计算成本,并将在聚变装置的多尺度模拟的应用和影响。主要研究员将在专业会议和讲习班上组织特别活动,以促进女性研究人员的参与。该项目为研究生提供了研究培训机会。该项目的目标是在一类称为自适应稀疏网格(aSG)不连续伽辽金(DG)方法的数值方法的设计和分析方面取得重大进展。该方法结合了高阶精度DG求解器,擅长输运模拟和降维技术的aSG方法。该提案的目的是推进时间依赖偏微分方程方案的算法基础,并将其推向融合科学的多尺度模拟和应用的更广泛竞技场。PI将研究几个基本问题,包括CFL条件的分析,多尺度时间步进,后处理和混合aSG计划的发展。对于一类桥接动力学和流体模型的多尺度动力学问题,通过利用aSG-DG框架提供的多分辨率,研究将利用多尺度模拟工具和分层定义网格上的多分辨率来实现计算加速。该计划将应用于托卡马克装置中失控电子的模拟。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Adaptive Multiresolution Interior Penalty Discontinuous Galerkin Method for Wave Equations in Second Order Form
  • DOI:
    10.1007/s10915-020-01322-w
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Juntao Huang;Yuan Liu;Wenting Guo;Zhanjing Tao;Yingda Cheng
  • 通讯作者:
    Juntao Huang;Yuan Liu;Wenting Guo;Zhanjing Tao;Yingda Cheng
An adaptive sparse grid local discontinuous Galerkin method for Hamilton-Jacobi equations in high dimensions
  • DOI:
    10.1016/j.jcp.2021.110294
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenting Guo;Juntao Huang;Zhanjing Tao;Yingda Cheng
  • 通讯作者:
    Wenting Guo;Juntao Huang;Zhanjing Tao;Yingda Cheng
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yingda Cheng其他文献

Numerical study of one-dimensional Vlasov–Poisson equations for infinite homogeneous stellar systems
无限均匀恒星系统一维Vlasov-Poisson方程的数值研究
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingda Cheng;I. Gamba
  • 通讯作者:
    I. Gamba
Energy Stable Nodal Discontinuous Galerkin Methods for Nonlinear Maxwell's Equations in Multi-dimensions
  • DOI:
    https://doi.org/10.1007/s10915-021-01651-4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Maohui Lyu;Vrushali A. Bokil;Yingda Cheng;Fengyan Li
  • 通讯作者:
    Fengyan Li
Kraus is king: High-order completely positive and trace preserving (CPTP) low rank method for the Lindblad master equation
克劳斯是王者:用于林德布拉德主方程的高阶完全正且保迹(CPTP)低秩方法
  • DOI:
    10.1016/j.jcp.2025.114036
  • 发表时间:
    2025-08-01
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Daniel Appelö;Yingda Cheng
  • 通讯作者:
    Yingda Cheng
An adaptive high-order piecewise polynomial based sparse grid collocation method with applications
基于自适应高阶分段多项式的稀疏网格配置方法及其应用
  • DOI:
    10.1016/j.jcp.2020.109770
  • 发表时间:
    2019-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhanjing Tao;Yan Jiang;Yingda Cheng
  • 通讯作者:
    Yingda Cheng
Discontinuous Galerkin methods for the Boltzmann‐Poisson systems in semiconductor device simulations
半导体器件模拟中玻尔兹曼-泊松系统的不连续伽辽金方法
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yingda Cheng;I. Gamba;A. Majorana;Chi
  • 通讯作者:
    Chi

Yingda Cheng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yingda Cheng', 18)}}的其他基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
OP: Collaborative Research: Compatible Discretizations for Maxwell Models in Nonlinear Optics
OP:协作研究:非线性光学中麦克斯韦模型的兼容离散化
  • 批准号:
    1720023
  • 财政年份:
    2017
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
CAREER: Development of Discontinuous Galerkin Methods for Kinetic Equations in High Dimensions
职业:高维动力学方程不连续伽辽金方法的发展
  • 批准号:
    1453661
  • 财政年份:
    2015
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Developing Energy-Conserving Deterministic Solvers for Kinetic Electromagnetic Plasma Simulations
开发用于动力学电磁等离子体模拟的节能确定性求解器
  • 批准号:
    1318186
  • 财政年份:
    2013
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
  • 批准号:
    1217563
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Development of Discontinuous Galerkin Methods for Kinetic Transport Models and Control Problems with State Constraints
动态输运模型和状态约束控制问题的不连续伽辽金方法的发展
  • 批准号:
    1016001
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant

相似海外基金

Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Sparse adaptive pre-conditioning for MCMC
MCMC 的稀疏自适应预处理
  • 批准号:
    2433351
  • 财政年份:
    2020
  • 资助金额:
    $ 20万
  • 项目类别:
    Studentship
Adaptive and parallel algorithms for solving partialdifferential equations with variable coefficients on sparse grids
求解稀疏网格上变系数偏微分方程的自适应并行算法
  • 批准号:
    418669609
  • 财政年份:
    2019
  • 资助金额:
    $ 20万
  • 项目类别:
    Research Grants
Cross-layer Adaptive Rate/Resolution Design for Energy-Aware Acquisition of Spectrally Sparse Signals Leveraging Spin-based Devices
利用基于自旋的器件实现频谱稀疏信号能量感知采集的跨层自适应速率/分辨率设计
  • 批准号:
    1810256
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
DC: Small: Adaptive Sparse Data Mining On Multicores
DC:小型:多核上的自适应稀疏数据挖掘
  • 批准号:
    1017882
  • 财政年份:
    2010
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Adaptive Approximation Algorithms for Sparse Data Representation
稀疏数据表示的自适应逼近算法
  • 批准号:
    79766559
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Priority Programmes
Adaptive wavelet frame methods for operator equations: Sparse grids, vector-valued spaces and applications to nonlinear inverse parabolic problems
算子方程的自适应小波框架方法:稀疏网格、向量值空间及其在非线性反抛物线问题中的应用
  • 批准号:
    79623579
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Priority Programmes
Optimizing Sparse Adaptive Representations of Signals Using Energy-Based Algorithm Enhancements
使用基于能量的算法增强来优化信号的稀疏自适应表示
  • 批准号:
    0729229
  • 财政年份:
    2007
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Dimension-adaptive sparse grid product methods for the Schrödinger equation
薛定谔方程的维度自适应稀疏网格乘积法
  • 批准号:
    5414711
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Priority Programmes
Adaptive Analysis of Sparse Factorial Designs and Related Problems
稀疏因子设计的自适应分析及相关问题
  • 批准号:
    0308861
  • 财政年份:
    2003
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了