"Semiparametric Estimation and Inference in Partially Identified Econometric Models"
“部分确定的计量经济模型中的半参数估计和推理”
基本信息
- 批准号:1230071
- 负责人:
- 金额:$ 5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-09-01 至 2013-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The econometrics literature has made substantial progress on estimation and inference methods for economic models, in which the parameter of interest is identified as a set. Yet, little is known about their properties when such partially identified models contain both finite and infinite dimensional parameters. Semiparametric models have been used widely in various empirical studies to make predictions and to conduct policy evaluations. They combine tractable parametric specification on key features of an economic model with flexible nonparametric restrictions on the rest. The main objective of this project is to expand the scope of semiparametric inference to major classes of partially identified econometric models. A particular focus will be placed on the theory of semiparametric efficiency. Recently, Kaido and Santos (2011) proposed an asymptotic efficiency concept for an important subset of partially identified models: the class of models defined by convex moment inequalities. The proposed research aims to expand the scope of this framework by studying other major classes of semiparametric partially identified models. Specifically two topics are considered.The first topic is on semiparametric regression models with an interval-censored variable. Interval censoring occurs frequently in micro-level data. The goal is to estimate a parameter that captures the marginal impacts of covariates on an interval-valued outcome variable without assuming any specific functional form of the regression function. The weighted average derivative of the regression function is one of such parameters. Although this parameter is not point identified in the presence of interval censoring, this approach may characterize its identified set. The researchers plan to study asymptotically efficient estimation of this set. The proposed efficient set-valued estimator will be useful for conducting empirical studies with survey data such as the Health and Retirement Study (HRS).The second topic studies efficient estimation of parameters indexed by a nuisance parameter. Many econometric models contain such parameters. Entry game models, for example, that are used to study various industries, contain structural parameters that could be fully recovered when the equilibrium selection rule were known. By varying the selection rule, the identified set can be equivalently viewed as a function of it. This project aims to to extend the efficiency concept developed in Kaido and Santos (2011) to study efficient estimation of this type of identified sets. Successful developments of inference methods for this class of models will be useful for conducting policy evaluations efficiently while allowing partial identification and flexible semiparametric specification.
计量经济学文献在经济模型的估计和推断方法方面取得了实质性的进展,其中感兴趣的参数被确定为一个集合。然而,很少有人知道他们的属性时,这种部分识别的模型包含有限和无限维参数。半参数模型已被广泛用于各种实证研究,以作出预测和进行政策评估。它们结合了联合收割机对经济模型关键特征的易处理的参数规范和对其余特征的灵活的非参数限制。这个项目的主要目标是扩大范围的半参数推断的主要类别的部分确定的计量经济模型。一个特别的重点将放在半参数效率的理论。最近,Kaido和桑托斯(2011)提出了部分可辨识模型的一个重要子集的渐近有效性概念:由凸矩不等式定义的一类模型。拟议的研究旨在扩大范围,通过研究其他主要类别的半参数部分识别模型的框架。具体地讲,本文讨论了两个问题:第一个问题是区间删失变量的半参数回归模型。区间删失经常发生在微观层面的数据。目标是估计一个参数,该参数捕获协变量对区间值结果变量的边际影响,而无需假设回归函数的任何特定函数形式。回归函数的加权平均导数是这样的参数之一。虽然该参数不是在区间删失存在下识别的点,但是该方法可以表征其识别集。研究人员计划研究这个集合的渐近有效估计。建议的有效集值估计将是有用的进行实证研究的调查数据,如健康和退休研究(HRS)。第二个主题研究的有效估计参数索引的滋扰参数。许多计量经济学模型都包含这样的参数。例如,用于研究不同行业的进入博弈模型包含的结构参数在已知均衡选择规则时可以完全恢复。通过改变选择规则,识别集可以等价地看作是它的函数。本项目旨在扩展Kaido和桑托斯(2011)提出的有效性概念,研究这类识别集的有效估计。这类模型的推理方法的成功发展将有助于有效地进行政策评估,同时允许部分识别和灵活的半参数规范。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hiroaki Kaido其他文献
Rate-Adaptive Bootstrap for Possibly Misspecified GMM ∗
针对可能错误指定的 GMM 的速率自适应引导 *
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
†. HanHong;Jessie Li;Denis Chetverikov;I. Fernández‐Val;Jean;Hiroaki Kaido;Peter Phillips;Zhongjun Qu;Yinchu Zhu - 通讯作者:
Yinchu Zhu
Random coefficients in static games of complete information
完全信息静态博弈中的随机系数
- DOI:
10.1920/wp.cem.2013.1213 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Fabian Dunker;Stefan Hoderlein;Hiroaki Kaido - 通讯作者:
Hiroaki Kaido
Moment Inequalities in the Context of Simulated and Predicted Variables
模拟和预测变量背景下的矩不等式
- DOI:
10.1920/wpm.cem.2018.2618 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Kaido;Jiaxuan Li;Marc Rysman - 通讯作者:
Marc Rysman
Testing Information Ordering for Strategic Agents
测试战略代理的信息订购
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sukjin Han;Hiroaki Kaido;Lorenzo Magnolfi - 通讯作者:
Lorenzo Magnolfi
Estimating Misspecified Moment Inequality Models
估计错误指定的矩不等式模型
- DOI:
10.1007/978-1-4614-1653-1_13 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Hiroaki Kaido;H. White - 通讯作者:
H. White
Hiroaki Kaido的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hiroaki Kaido', 18)}}的其他基金
Robust Inference and Specification Analysis in Incomplete Models
不完整模型中的稳健推理和规范分析
- 批准号:
2018498 - 财政年份:2020
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Collaborative Research: Robust Inference and Computational Methods for Optimal Values of Nonlinear Programs
协作研究:非线性程序最优值的鲁棒推理和计算方法
- 批准号:
1824344 - 财政年份:2018
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Semiparametric Estimation and Inference in Partially Identified Econometric Models
部分识别计量经济模型中的半参数估计和推理
- 批准号:
1357653 - 财政年份:2014
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
相似海外基金
Identification, estimation, and inference of the discount factor in dynamic discrete choice models
动态离散选择模型中折扣因子的识别、估计和推断
- 批准号:
24K04814 - 财政年份:2024
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Partitioning-Based Learning Methods for Treatment Effect Estimation and Inference
基于分区的治疗效果估计和推理学习方法
- 批准号:
2241575 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Applying causal inference methods to improve estimation of the real-world benefits and harms of lung cancer screening
应用因果推理方法来改进对肺癌筛查的现实益处和危害的估计
- 批准号:
10737187 - 财政年份:2023
- 资助金额:
$ 5万 - 项目类别:
Inference and Model Building for Vision-based Estimation of Transmissive Objects
基于视觉的透射物体估计的推理和模型构建
- 批准号:
RGPIN-2017-05638 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Estimation and inference in directed acyclic graphical models for biological networks
生物网络有向无环图模型的估计和推理
- 批准号:
10330130 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Estimation and Inference with High-Dimensional Data
高维数据的估计和推理
- 批准号:
2210850 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Standard Grant
Improvement of nonparametric inference based on kernel type estimation and resampling method, and its application
基于核类型估计和重采样方法的非参数推理改进及其应用
- 批准号:
22K11939 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Non-parametric identification, estimation and inference: generalized functions approach
非参数识别、估计和推理:广义函数方法
- 批准号:
RGPIN-2020-05444 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Essential and incidental measurement error: Bayesian estimation and inference when sample measurements are random-variable-valued
基本和偶然测量误差:样本测量为随机变量值时的贝叶斯估计和推断
- 批准号:
RGPIN-2021-04357 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual
Estimation and Inference via Computational Statistics Algorithms
通过计算统计算法进行估计和推理
- 批准号:
RGPIN-2019-04142 - 财政年份:2022
- 资助金额:
$ 5万 - 项目类别:
Discovery Grants Program - Individual