Collaborative Research: Robust Inference and Computational Methods for Optimal Values of Nonlinear Programs

协作研究:非线性程序最优值的鲁棒推理和计算方法

基本信息

  • 批准号:
    1824344
  • 负责人:
  • 金额:
    $ 12.05万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-09-01 至 2020-08-31
  • 项目状态:
    已结题

项目摘要

Empirical research in the social sciences often entails estimating and drawing robust inference about optimal values of nonlinear programs. Examples include, but are not limited to, the analysis of causal effects of economic policies; features of the distribution of counterfactual outcomes (e.g. optimal reserve prices and optimal revenues) under weak assumptions; counterfactual vote shares and seats assignments; welfare effects of policy interventions; demand extrapolation and welfare analysis subject to rationality constraints; maximum and minimum responses to monetary policies. This research aims at establishing a general, formal framework and providing a methodology for estimation and robust inference on optimal values of nonlinear programs under weak restrictions on the underlying process that has generated the observable data. Recognizing that the computational feasibility of the method is crucial for its applicability and usefulness for empirical researchers and society more broadly, the investigators deliver algorithms for computation of the proposed estimators and robust confidence intervals. This research also delivers a collection of portable computer programs implementing the methodology that will be shared with the community openly and free of charges or restrictions.This research aims at developing robust inference procedures and computational methods for parameters in econometric models that are characterized as optimal values of nonlinear programs. Making inference on such functionals is nontrivial because subtle features of the underlying optimization problem may affect inference. For example, the optimal solution may not be unique, may be unique but only weakly identified, or may be characterized by intricate constraints. Due to these challenging features, existing methods often impose assumptions such as constraint qualifications on the underlying optimization problem. These are hard to verify in practice. This research aims at developing inference methods that place very little structure on the optimization problem. Further, the project aims at developing and investigating the convergence properties of a computational method that can be used to implement the procedure. Nonlinear programs often involve black-box functions that are computed by simulation or by solving a complex structural model. The algorithm developed in this project, which is based on the response surface method, mitigates the computational cost by constructing flexible approximations to such functions and adaptively drawing evaluation points to regions that are highly relevant for finding the optimal value.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
社会科学中的实证研究通常需要对非线性规划的最优值进行估计和得出可靠的推断。例子包括但不限于经济政策的因果效应分析;在弱假设下反事实结果(例如最优保留价格和最优收入)的分布特征;反事实投票份额和席位分配;政策干预的福利效应;合理性约束下的需求外推和福利分析;对货币政策的最大和最小反应。本研究的目的是建立一个通用的,正式的框架,并提供一种方法来估计和鲁棒推理的最优值的非线性规划的基础过程,产生了可观察的数据的弱限制。认识到该方法的计算可行性对于实证研究人员和社会更广泛的适用性和有用性至关重要,研究人员提供了用于计算拟议估计量和稳健置信区间的算法。本研究还提供了一个便携式计算机程序的集合,将与社区公开和免费或限制共享的方法,本研究的目的是开发强大的推理程序和计算方法的参数的计量经济模型,其特征是非线性规划的最优值。在这样的泛函上进行推理是不平凡的,因为底层优化问题的细微特征可能会影响推理。例如,最优解可能不是唯一的,可能是唯一的但仅弱识别的,或者可能由复杂的约束表征。由于这些具有挑战性的功能,现有的方法往往强加的假设,如约束条件的基本优化问题。这些在实践中很难验证。本研究的目的是开发推理方法,把很少的结构上的优化问题。此外,该项目旨在开发和研究可用于实施该程序的计算方法的收敛特性。非线性程序通常涉及通过模拟或求解复杂结构模型来计算的黑盒函数。该项目开发的算法以响应面法为基础,通过构建灵活的近似函数,并自适应地将评估点绘制到与寻找最优值高度相关的区域,从而降低了计算成本。该奖项反映了NSF的法定使命,通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonparametric identification of random coefficients in aggregate demand models for differentiated products
差异化产品总需求模型中随机系数的非参数辨识
  • DOI:
    10.1093/ectj/utad002
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dunker, Fabian;Hoderlein, Stefan;Kaido, Hiroaki
  • 通讯作者:
    Kaido, Hiroaki
Confidence Intervals for Projections of Partially Identified Parameters
  • DOI:
    10.3982/ecta14075
  • 发表时间:
    2019-07-01
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Kaido, Hiroaki;Molinari, Francesca;Stoye, Jorg
  • 通讯作者:
    Stoye, Jorg
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hiroaki Kaido其他文献

Rate-Adaptive Bootstrap for Possibly Misspecified GMM ∗
针对可能错误指定的 GMM 的速率自适应引导 *
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    †. HanHong;Jessie Li;Denis Chetverikov;I. Fernández‐Val;Jean;Hiroaki Kaido;Peter Phillips;Zhongjun Qu;Yinchu Zhu
  • 通讯作者:
    Yinchu Zhu
Moment Inequalities in the Context of Simulated and Predicted Variables
模拟和预测变量背景下的矩不等式
  • DOI:
    10.1920/wpm.cem.2018.2618
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroaki Kaido;Jiaxuan Li;Marc Rysman
  • 通讯作者:
    Marc Rysman
Random coefficients in static games of complete information
完全信息静态博弈中的随机系数
  • DOI:
    10.1920/wp.cem.2013.1213
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fabian Dunker;Stefan Hoderlein;Hiroaki Kaido
  • 通讯作者:
    Hiroaki Kaido
Estimating Misspecified Moment Inequality Models
估计错误指定的矩不等式模型
  • DOI:
    10.1007/978-1-4614-1653-1_13
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroaki Kaido;H. White
  • 通讯作者:
    H. White
Testing Information Ordering for Strategic Agents
测试战略代理的信息订购
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sukjin Han;Hiroaki Kaido;Lorenzo Magnolfi
  • 通讯作者:
    Lorenzo Magnolfi

Hiroaki Kaido的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hiroaki Kaido', 18)}}的其他基金

Robust Inference and Specification Analysis in Incomplete Models
不完整模型中的稳健推理和规范分析
  • 批准号:
    2018498
  • 财政年份:
    2020
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
Semiparametric Estimation and Inference in Partially Identified Econometric Models
部分识别计量经济模型中的半参数估计和推理
  • 批准号:
    1357653
  • 财政年份:
    2014
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
"Semiparametric Estimation and Inference in Partially Identified Econometric Models"
“部分确定的计量经济模型中的半参数估计和推理”
  • 批准号:
    1230071
  • 财政年份:
    2012
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2411394
  • 财政年份:
    2024
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309728
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
NRI/Collaborative Research: Robust Design and Reliable Autonomy for Transforming Modular Hybrid Rigid-Soft Robots
NRI/合作研究:用于改造模块化混合刚软机器人的稳健设计和可靠自主性
  • 批准号:
    2327702
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Robust Sensing and Learning for Autonomous Driving Against Perceptual Illusion
CPS:中:协作研究:针对自动驾驶对抗知觉错觉的鲁棒感知和学习
  • 批准号:
    2235231
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Robust and miniature laser with tailorable single-mode operation range
合作研究:具有可定制单模工作范围的坚固微型激光器
  • 批准号:
    2240448
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Omnidirectional Perching on Dynamic Surfaces: Emergence of Robust Behaviors from Joint Learning of Embodied and Motor Control
合作研究:动态表面上的全方位栖息:从具身控制和运动控制的联合学习中出现鲁棒行为
  • 批准号:
    2230321
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Accuracy-Preserving Robust Time-Stepping Methods for Fluid Problems
协作研究:流体问题的保持精度的鲁棒时间步进方法
  • 批准号:
    2309727
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
  • 批准号:
    2315613
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Critical Learning Periods Augmented Robust Federated Learning
协作研究:SaTC:核心:小型:关键学习期增强鲁棒联邦学习
  • 批准号:
    2315612
  • 财政年份:
    2023
  • 资助金额:
    $ 12.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了