Collaborative Research: Understanding Magnetostrictive Galfenol Physics for Micro- and Nano-Scale Devices
合作研究:了解微型和纳米级器件的磁致伸缩加酚物理
基本信息
- 批准号:1232218
- 负责人:
- 金额:$ 27.76万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2016-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The proposed research focuses on structured analytical and experimental analysis of magnetostriction in iron-gallium (Galfenol) thin films and nanowires to advance understanding of the magnetostrictive physics at this scale and to enable transformative new micro- and nano-scale device functionality. This alloy system has the distinct advantage of having high strains in response to magnetic fields (400ppm) while also exhibiting the mechanical ductility and strength of iron. The ability to electrodeposit this active material is possible due to preliminary work which overcame the difficulty of Ga oxidation in aqueous electrolytes, and which therefore enabled FeGa metallic alloys to be fabricated as thin films and nanowires. The intellectual merit of this research includes that insights from study of the proposed micro- and nano-scale test devices will lead to a deep understanding of the exciting device physics needed to facilitate utilizing magnetostriction at the nanoscale such as in artificial cilia sensors and actuators that mimic biological transducers in nature. As the only highly responsive material possible as ductile nanowires and conformal (nonplanar) thick films, this research is also expected to lead to the creative, new concepts for transformative sensors and actuators at the micro- and nano-scale. This work proceeds with an original plan to make the leap from materials science to devices with four important goals. The first goal is a simple, yet critical, step of measuring magnetostriction of electrodeposited Galfenol thin films as a function of composition, crystallographic orientation and magnetic domain orientation. A capacitance bridge will be used to measure the magnetostriction of these films and the optimal deposition parameters will be used in the subsequent goals. The second goal is to make a non-contact torque sensor as a test device to study the device physics of Galfenol films. The torque sensors will be evaluated in an existing rotating shaft torque test stand. The third goal involves high-risk, high-payoff measurements of magnetostriction in nanoscale devices (10-100nm diameter Galfenol nanowires). Wires with the right composition, crystal structure, and even necessary segmentation have been previously made, but measuring magnetostriction at this scale is difficult due to unknown strains, very small magnetic fields (from single wires), and general size constraints. Here, measurements of giant magnetoresistance (GMR) in individual nanowires will be used to determine the effect of applied tensile and compressive strains. In addition, magnetic force microscopy will be used to observe magnetization rotation in bent nanowires to verify GMR results. The fourth and last goal will involve making high-resolution tactile sensors using Galfenol nanowires to learn more about their behavior and integration into devices. This research will have impact in a broad variety of fields including spintronics (FeGa on GaAs), vibration sensors, energy harvesters as cantilevers and/or nanowires, and a wide range of sensors and actuators using non-contact mechano-magneto coupling (e.g. conformal non-contact torque sensors and structural health monitoring sensors). This research will impact the education of undergraduates via REU programs at both universities, and especially underrepresented students via faculty mentoring programs. Graduate students will benefit from course development that will include the research results from this project and from interactions with industry via industrial centers with annual reviews, journal clubs, and seminars. Finally, the PIs' will train students in outreach to k-12 students to continue the broad impact in the next generation.
拟议的研究重点是铁镓(Galfenol)薄膜和纳米线中磁致伸缩的结构分析和实验分析,以促进对这种规模的磁致伸缩物理学的理解,并实现变革性的新微米和纳米级器件功能。这种合金系统具有响应于磁场(400 ppm)的高应变的明显优势,同时还表现出铁的机械延展性和强度。电沉积这种活性材料的能力是可能的,这是由于初步工作,克服了Ga氧化在水性电解质中的困难,并因此使FeGa金属合金被制造成薄膜和纳米线。这项研究的智力价值包括,从拟议的微米和纳米尺度的测试设备的研究的见解将导致深入了解所需的令人兴奋的设备物理,以促进利用磁致伸缩在纳米级,如在人造纤毛传感器和执行器,模仿生物换能器的性质。作为唯一可能作为韧性纳米线和共形(非平面)厚膜的高响应性材料,这项研究也有望在微米和纳米尺度上为变革性传感器和致动器带来创造性的新概念。这项工作进行了一个原始的计划,使飞跃从材料科学到设备有四个重要的目标。第一个目标是一个简单的,但关键的步骤,测量的电沉积Galfenol薄膜的磁致伸缩的组合物,晶体取向和磁畴取向的函数。采用电容电桥测量薄膜的磁致伸缩性能,并在后续的实验中采用最佳的沉积参数。第二个目标是制作一个非接触式扭矩传感器,作为研究Galfenol薄膜的器件物理的测试装置。扭矩传感器将在现有的旋转轴扭矩测试台上进行评估。第三个目标涉及纳米级器件(直径为10- 100 nm的Galfenol纳米线)中磁致伸缩的高风险、高回报测量。具有正确成分,晶体结构,甚至必要的分段的导线以前已经制成,但由于未知的应变,非常小的磁场(来自单线)和一般尺寸限制,在这种尺度下测量磁致伸缩是困难的。在这里,巨磁电阻(GMR)在个别纳米线的测量将被用来确定所施加的拉伸和压缩应变的效果。此外,磁力显微镜将用于观察弯曲纳米线的磁化旋转,以验证GMR结果。第四个也是最后一个目标将涉及使用Galfenol纳米线制造高分辨率触觉传感器,以了解更多关于其行为和集成到设备中的信息。这项研究将在广泛的领域产生影响,包括自旋电子学(FeGa on GaAs),振动传感器,能量收集器作为杠杆和/或纳米线,以及使用非接触式机械-磁耦合的各种传感器和致动器(例如保形非接触式扭矩传感器和结构健康监测传感器)。这项研究将通过两所大学的REU项目影响本科生的教育,特别是通过教师指导项目影响代表性不足的学生。研究生将受益于课程开发,其中包括本项目的研究成果,以及通过年度评论,期刊俱乐部和研讨会的工业中心与行业的互动。最后,PI将培训学生与K-12学生的联系,以继续对下一代产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alison Flatau其他文献
Alison Flatau的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alison Flatau', 18)}}的其他基金
Workshop/Collaborative Research: 2014 NSF CAREER Proposal Writing Workshop; University of Maryland, College Park, Maryland; 7-8 April 2014
研讨会/合作研究:2014年NSF职业提案写作研讨会;
- 批准号:
1411133 - 财政年份:2014
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
Travel for 6th World Conference on Structural Control and Monitoring; Barcelona, Spain; July 2014
出席第六届世界结构控制与监测会议;
- 批准号:
1446355 - 财政年份:2014
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
SusChEM: Collaborative Research: The Role of Surface-Energy on Texture Development in Rare-Earth-Free Auxetic and Magnetostrictive Materials
SusChEM:合作研究:表面能对无稀土拉胀和磁致伸缩材料织构发展的作用
- 批准号:
1310447 - 财政年份:2013
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
EAGER: The Sleep Environment as a Risk Factor for Eye Pressure Elevation
EAGER:睡眠环境是眼压升高的危险因素
- 批准号:
1337502 - 财政年份:2013
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
US-China Workshop on Biosensing and Bioactuation
中美生物传感与生物驱动研讨会
- 批准号:
1045936 - 财政年份:2010
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
GOALI/Collaborative Research: Ferromagnetic Nanowires for Bio-inspired Microfluidic NanoElectroMechanical Systems (NEMS)
GOALI/合作研究:用于仿生微流控纳米机电系统 (NEMS) 的铁磁纳米线
- 批准号:
1000019 - 财政年份:2010
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
Resilience in Rail-Based Intermodal Transportation Systems: Performance Measurement and Decision Support
基于铁路的多式联运系统的弹性:绩效衡量和决策支持
- 批准号:
1000036 - 财政年份:2010
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Student travel and networking grant for SMASIS 2008
SMASIS 2008 学生旅费和社交补助金
- 批准号:
0847303 - 财政年份:2008
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
Collaborative Research: Smart Shoes and Smart Socks for Abnormal Gait Diagnosis and Assistance
合作研究:智能鞋和智能袜用于异常步态诊断和辅助
- 批准号:
0758571 - 财政年份:2008
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318855 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding Environmental and Ecological Controls on Carbon Export and Flux Attenuation near Bermuda
合作研究:了解百慕大附近碳输出和通量衰减的环境和生态控制
- 批准号:
2318940 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the Influence of Turbulent Processes on the Spatiotemporal Variability of Downslope Winds in Coastal Environments
合作研究:了解湍流过程对沿海环境下坡风时空变化的影响
- 批准号:
2331729 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
Collaborative Research: Design: Strengthening Inclusion by Change in Building Equity, Diversity and Understanding (SICBEDU) in Integrative Biology
合作研究:设计:通过改变综合生物学中的公平、多样性和理解(SICBEDU)来加强包容性
- 批准号:
2335235 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Collaborative Research: Mechanistic understanding of chemomechanics in phase-changing electroceramics for sodium-ion batteries
合作研究:钠离子电池相变电陶瓷化学力学的机理理解
- 批准号:
2325464 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding New Labor Relations for the 21st Century
合作研究:理解21世纪的新型劳动关系
- 批准号:
2346230 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Standard Grant
Collaborative Research: Improved Understanding of Subduction Zone Tsunami Genesis Using Sea Floor Geodesy Offshore Central America
合作研究:利用中美洲近海海底大地测量学提高对俯冲带海啸成因的了解
- 批准号:
2314272 - 财政年份:2024
- 资助金额:
$ 27.76万 - 项目类别:
Continuing Grant