Development of Algorithms for the Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials
颗粒材料三维微观结构量化和模拟算法的开发
基本信息
- 批准号:1234811
- 负责人:
- 金额:$ 7.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-08-15 至 2012-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The research supported by this award is directed toward the development of a suite of stereological algorithms to allow for the robust quantification of the three-dimensional structure of granular soils from the results of computed tomography (CT) scans of specimens tested in the laboratory. These algorithms will allow for the unambiguous description of the solids and void space at multiple scales within the specimen. Such an approach is potentially transformative with respect to the manner in which the structure of granular materials are measured, described, quantified, and modeled. These algorithms, when coupled with existing approaches to the quantification and simulation of particle shapes, will allow for unprecedented amounts of information to be extracted from laboratory measurements and, if desired, used for discrete numerical simulations. There is currently a significant disconnect between the experimental and numerical approaches that are exploited for the study of granular material microstructure. An experimental approach relies upon observation of the response of real materials in the laboratory while a numerical approach is typically applied to an idealized assembly of particles but is capable of rapid replicate tests and continuous monitoring of microstructure as a function of boundary deformation. However, there is not currently a robust and consistent procedure for linking the two research strategies across multiple scales. The same algorithms used to quantify microstructure in real specimens can be used to guide the generation of granular assemblies for DEM simulations such that they are structurally and statistically similar to those measured in the laboratory. This suite of algorithms will be valuable to researchers in geotechnical engineering and other fields where characterization of microstructure at similar resolutions is necessary: e.g., petroleum engineering, materials processing, composite materials, ceramics, and some consumer goods. While some individual algorithms currently exist in the literature, these have often been developed on proprietary (and varying) platforms and are generally not widely distributed. Significantly, these disparate approaches have not been synthesized across a single coherent data set to allow for comparison of results, inference of higher-order behavior, or realization of any computational efficiencies that may arise when performing multiple characterizations of a single microstructure. Thus, development and dissemination of the proposed algorithms may have significant broader impacts. In addition, the proposed work will provide valuable training to the students working on the project team and equip them with a set of skills that is portable to a variety of problems.
该奖项支持的研究旨在开发一套体视学算法,以便根据实验室测试标本的计算机断层扫描(CT)扫描结果对粒状土壤的三维结构进行稳健的量化。 这些算法将允许在多个尺度内的试样的固体和空隙空间的明确的描述。 这种方法是潜在的变革的方式,其中颗粒材料的结构进行测量,描述,量化,和建模。 这些算法,再加上现有的方法来量化和模拟的颗粒形状,将允许前所未有的信息量从实验室测量中提取,如果需要的话,用于离散的数值模拟。 目前有一个显着的实验和数值方法,用于研究粒状材料的微观结构之间的脱节。 实验方法依赖于在实验室中观察真实的材料的响应,而数值方法通常应用于颗粒的理想化组装,但能够快速重复测试和连续监测作为边界变形的函数的微观结构。 然而,目前还没有一个强大的和一致的程序,在多个尺度连接两个研究策略。用于量化真实的试样中的微观结构的相同算法可用于指导用于DEM模拟的颗粒集合体的生成,使得它们在结构上和统计上类似于实验室中测量的那些。 这套算法对岩土工程和其他需要以类似分辨率表征微观结构的领域的研究人员很有价值:例如,石油工程、材料加工、复合材料、陶瓷和一些消费品。 虽然目前文献中存在一些单独的算法,但这些算法通常是在专有(和不同的)平台上开发的,并且通常没有广泛分布。 值得注意的是,这些不同的方法还没有被合成在一个单一的连贯的数据集,以允许结果的比较,高阶行为的推断,或实现任何计算效率时,可能会出现执行多个表征一个单一的微结构。 因此,拟议算法的开发和传播可能会产生更广泛的影响。 此外,拟议的工作将提供宝贵的培训,以学生的项目团队工作,并配备了一套技能,是便携式的各种问题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
T. Matthew Evans其他文献
Investigating the elegance of empty space
探究虚空的优雅
- DOI:
10.1038/s43588-023-00554-8 - 发表时间:
2023-11-21 - 期刊:
- 影响因子:18.300
- 作者:
T. Matthew Evans - 通讯作者:
T. Matthew Evans
2D DEM analysis of the interactions between bio-inspired geo-probe and soil during inflation–deflation cycles
膨胀-通货紧缩循环期间仿生地质探测器与土壤之间相互作用的二维 DEM 分析
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:2.4
- 作者:
Yifei Ma;T. Matthew Evans;Douglas D. Cortes - 通讯作者:
Douglas D. Cortes
Spatiotemporal Evolution of Biomineralization in Heterogeneous Pore Structure
- DOI:
10.1139/cgj-2022-0496 - 发表时间:
2023 - 期刊:
- 影响因子:
- 作者:
Guoliang Ma;Xiang He;Yang Xiao;Jian Chu;Hanlong Liu;Armin W. Stuedlein;T. Matthew Evans - 通讯作者:
T. Matthew Evans
T. Matthew Evans的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('T. Matthew Evans', 18)}}的其他基金
Collaborative Research: Implementation Strategies and Performance of Unsaturated Bio-Cemented Dune Sand
合作研究:不饱和生物水泥沙丘砂的实施策略和性能
- 批准号:
1933355 - 财政年份:2019
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Collaborative Research: Soil Improvement Through Bio-Cementation: Physical and Numerical Experiments
合作研究:通过生物胶结改良土壤:物理和数值实验
- 批准号:
1538460 - 财政年份:2015
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Development of Algorithms for the Quantification and Simulation of Three-Dimensional Microstructure in Granular Materials
颗粒材料三维微观结构量化和模拟算法的开发
- 批准号:
1261563 - 财政年份:2012
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Integration of Sensor Technologies into the Civil Engineering Curriculum
将传感器技术融入土木工程课程
- 批准号:
0837612 - 财政年份:2009
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
相似海外基金
CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
- 批准号:
2340586 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
UQ4FM: Uncertainty quantification algorithms for flood modelling
UQ4FM:洪水建模的不确定性量化算法
- 批准号:
EP/X040941/1 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Research Grant
Integrated Framework for Cooperative 3D Printing: Uncertainty Quantification, Decision Models, and Algorithms
协作 3D 打印的集成框架:不确定性量化、决策模型和算法
- 批准号:
2329739 - 财政年份:2024
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
- 批准号:
2143625 - 财政年份:2022
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
CAREER: Uncertainty Quantification for Quantum Computing Algorithms
职业:量子计算算法的不确定性量化
- 批准号:
2143915 - 财政年份:2022
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
- 批准号:
RGPIN-2017-06375 - 财政年份:2022
- 资助金额:
$ 7.9万 - 项目类别:
Discovery Grants Program - Individual
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
- 批准号:
RGPIN-2017-06375 - 财政年份:2021
- 资助金额:
$ 7.9万 - 项目类别:
Discovery Grants Program - Individual
Classical and Quantum Algorithms for the Principled Quantification of Infrastructure Safety
用于基础设施安全原则量化的经典和量子算法
- 批准号:
2037545 - 财政年份:2021
- 资助金额:
$ 7.9万 - 项目类别:
Standard Grant
Scalable Algorithms for Uncertainty Quantification and Bayesian Inference with Applications to Computational Mechanics
不确定性量化和贝叶斯推理的可扩展算法及其在计算力学中的应用
- 批准号:
RGPIN-2017-06375 - 财政年份:2020
- 资助金额:
$ 7.9万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Fast and Accurate Algorithms for Uncertainty Quantification in Large-Scale Inverse Problems
职业:大规模反问题中不确定性量化的快速准确算法
- 批准号:
1845406 - 财政年份:2019
- 资助金额:
$ 7.9万 - 项目类别:
Continuing Grant














{{item.name}}会员




