CAREER: Uncertainty Quantification for Quantum Computing Algorithms

职业:量子计算算法的不确定性量化

基本信息

  • 批准号:
    2143915
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Quantum computing harnesses properties of quantum states to enable computations that would be intractable using classical computing. It is widely established that, in the future, quantum computing can revolutionize the way one performs and thinks about computation and serve as the backbone of groundbreaking new technologies for scientific discovery, engineering design, national security, and business development, to name a few. Currently, the key barrier in the development of quantum computing is the error induced by the noise in the hardware. The research goal of this project is to develop methods to model the error propagation in quantum computing algorithms and filter the resulting noise in the outcomes. This study will help enhance the performance of general quantum computing algorithms in terms of accuracy and efficiency. The educational goals of this effort are to prepare students for interdisciplinary research and promote STEM participation and equity among underrepresented groups. Outreach activities also involve K-12 students. The investigator will develop new uncertainty quantification methods in the following four directions to understand and alleviate the effect of noise on quantum computing algorithms: (1) describing propagation of gate error and readout error using epistemic uncertainty models; (2) mitigating errors using constrained optimization methods and Bayesian approaches; (3) analyzing asymptotic behavior of the propagation of the error; (4) developing an open-source software package to implement the uncertainty quantification algorithms. These new methods will leverage Bayesian inference approaches, tensor decomposition techniques, asymptotic analysis tools for stochastic differential equations, and high-performance computing packages to build the foundation of a "quantum numerical analysis" framework from a probabilistic perspective. This framework is general, and it can be used to assess the performance of real-world quantum processors and evaluate the suitability of specific quantum computing hardware architectures for a wide range of applications. This project is jointly supported by the Division of Mathematical Sciences: Computational Mathematics Program and the Division of Computing and Communication Foundations: Foundations of Emerging Technologies Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项全部或部分根据2021年美国救援计划法案(公法117-2)资助。量子计算利用量子态的性质来实现使用经典计算难以处理的计算。人们普遍认为,在未来,量子计算可以彻底改变人们执行和思考计算的方式,并成为科学发现、工程设计、国家安全和商业发展等突破性新技术的支柱。目前,量子计算发展的关键障碍是硬件中的噪声引起的误差。该项目的研究目标是开发方法来模拟量子计算算法中的错误传播,并过滤结果中产生的噪声。这项研究将有助于提高一般量子计算算法在精度和效率方面的性能。这项工作的教育目标是为学生进行跨学科研究做好准备,并促进STEM参与和代表性不足的群体之间的公平。外联活动也涉及K-12学生。研究人员将在以下四个方向开发新的不确定性量化方法,以理解和减轻噪声对量子计算算法的影响:(1)使用认知不确定性模型描述门误差和读出误差的传播;(2)使用约束优化方法和贝叶斯方法减轻误差;(3)分析误差传播的渐近行为;(4)使用认知不确定性模型描述门误差和读出误差的传播。(4)开发开源软件包来实现不确定性量化算法。这些新方法将利用贝叶斯推理方法、张量分解技术、随机微分方程的渐近分析工具和高性能计算包,从概率的角度构建“量子数值分析”框架的基础。这个框架是通用的,它可以用来评估现实世界的量子处理器的性能,并评估特定量子计算硬件架构对广泛应用的适用性。该项目由数学科学部:计算数学计划和计算与通信基础部:新兴技术基础计划共同支持。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bayesian Approach for Characterizing and Mitigating Gate and Measurement Errors
用于表征和减轻门和测量误差的贝叶斯方法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiu Yang其他文献

Oxygen vacancy defect and field effect mediated ZnO/WO2.92 heterojunction for enhanced corrosion resistance
氧空位缺陷和场效应介导的 ZnO/WO2.92 异质结可增强耐腐蚀性
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Xiao-Jiao Guo;Xiu Yang;Xiao-Yu Yuan;Dan Zhou;Yi Lu;Jin-Ku Liu
  • 通讯作者:
    Jin-Ku Liu
HDAC3 of dorsal hippocampus induces postoperative cognitive dysfunction in aged mice
背侧海马 HDAC3 诱导老年小鼠术后认知功能障碍
  • DOI:
    10.1016/j.bbr.2022.114002
  • 发表时间:
    2022-07
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Li Yang;Jing-Ru Hao;Yin Gao;Xiu Yang;Xiao-Ran Shen;Hu-Yi Wang;Nan Sun;Can Gao
  • 通讯作者:
    Can Gao
E2F4 regulates the cell cycle and DNA replication in the silkworm, Bombyx mori
E2F4 调节家蚕 (Bombyx mori) 的细胞周期和 DNA 复制
  • DOI:
    10.1111/1744-7917.12991
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Peng Chen;Ling Wang;Yan‐Bi Long;Guang‐Yan Liang;Xiu Yang;Zhan‐Qi Dong;Xia Jiang;Yan Zhu;Min‐Hui Pan;Cheng Lu
  • 通讯作者:
    Cheng Lu
Adaptive optimal fuzzy control of asymmetric nonlinear Chua's circuit chaos systems
非对称非线性蔡氏电路混沌系统的自适应最优模糊控制
Coupling assessment for the water-economy-ecology nexus in Western China
  • DOI:
    110648
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    6.9
  • 作者:
    Zhe Cheng;Jialin He;Shan Xu;Xiu Yang
  • 通讯作者:
    Xiu Yang

Xiu Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

CAREER: Scalable and Robust Uncertainty Quantification using Subsampling Markov Chain Monte Carlo Algorithms
职业:使用子采样马尔可夫链蒙特卡罗算法进行可扩展且稳健的不确定性量化
  • 批准号:
    2340586
  • 财政年份:
    2024
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Efficient Uncertainty Quantification in Turbulent Combustion Simulations: Theory, Algorithms, and Computations
职业:湍流燃烧模拟中的高效不确定性量化:理论、算法和计算
  • 批准号:
    2143625
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
Conference: Support for Early Career Participants in Conference on Uncertainty Quantification for Machine Learning Integrated Physics Modeling (UQ-MLIP)
会议:为机器学习集成物理建模不确定性量化会议 (UQ-MLIP) 的早期职业参与者提供支持
  • 批准号:
    2227959
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Forward and Inverse Uncertainty Quantification of Cardiovascular Fluid-Structure Dynamics via Multi-fidelity Physics-Informed Bayesian Geometric Deep Learning
职业:通过多保真物理信息贝叶斯几何深度学习对心血管流体结构动力学进行正向和逆向不确定性量化
  • 批准号:
    2047127
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: A Stochastic Framework for Uncertainty Quantification on Complex Geometries: Application to Additive Manufacturing
职业:复杂几何形状不确定性量化的随机框架:在增材制造中的应用
  • 批准号:
    1942928
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Uncertainty Quantification and Optimization with Hybrid Models for Molecular-to-Systems Engineering
职业:分子到系统工程的混合模型的不确定性量化和优化
  • 批准号:
    1941596
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Fast and Accurate Algorithms for Uncertainty Quantification in Large-Scale Inverse Problems
职业:大规模反问题中不确定性量化的快速准确算法
  • 批准号:
    1845406
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Improving Convective-Scale Weather Prediction through Advanced Bayesian Filtering, Verification, and Uncertainty Quantification
职业:通过高级贝叶斯过滤、验证和不确定性量化改进对流规模天气预报
  • 批准号:
    1848363
  • 财政年份:
    2019
  • 资助金额:
    $ 40万
  • 项目类别:
    Continuing Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
  • 批准号:
    1653339
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
CAREER: Optimization-based Quantification of Statistical Uncertainty in Stochastic and Simulation Analysis
职业:随机和仿真分析中基于优化的统计不确定性量化
  • 批准号:
    1834710
  • 财政年份:
    2017
  • 资助金额:
    $ 40万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了