Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
基本信息
- 批准号:1251399
- 负责人:
- 金额:$ 2.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-05-01 至 2014-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The conference Quantum Topology and Hyperbolic Geometry will be held in Nha Trang, Vietnam, May 13-May 17, 2013. The aim of the conference is to understand how Quantum Field Theory in dimension three detects the topology and geometry of the underlying space. As an example, we will study the connection of the index of a hyperbolic 3-manifold (a remarkable q-series of Dimofte-Gaiotto-Gukov, also studied by Garoufalidis and Garoufalidis-Hodgson-Rubinstein-Segerman) with the asymptotics of the colored Jones polynomial, and with categorification of its integer coefficients. We will also study the recursions of the above q-series and their relation to the AJ and Slope Conjectures, and the relation of the above q-series of Nahm type with thestability of the colored Jones polynomial of alternating links, proven by Garoufalidis-Le.The conference will focus on this new and exciting developments of mathematical physics and their implications to geometry and topology in dimension 3. This is a fertile land of concrete, testable conjectures, symbolic computer experimentation, physics, algebra and low dimensional topology. The opportunities for young researchers are many, and the conference would come in a fortunate timing where the old ideas in quantum topology meet the new ones. The conference website can be found at http://vietnam2013.gatech.edu/.
会议量子拓扑和双曲几何将在芽庄举行,越南,5月13日至5月17日,2013年。会议的目的是了解三维量子场论如何检测底层空间的拓扑和几何。作为一个例子,我们将研究双曲3-流形(Dimofte-Gaiotto-Gukov的一个显著的q-级数,也由Garoufaldine和Garoufalidis-Hodgson-Rubinstein-Segerman研究)的指数与有色琼斯多项式的渐近性以及其整数系数的分类之间的联系。我们还将研究上述q-级数的递归及其与AJ和Slope猜想的关系,以及上述Nahm型q-级数与Garoufalidis-Le证明的交替链接的有色Jones多项式的稳定性的关系。会议将专注于数学物理的这一新的令人兴奋的发展及其对三维几何和拓扑的影响。这是一片肥沃的土地,具体的,可测试的结构,符号计算机实验,物理,代数和低维拓扑。年轻研究人员的机会很多,这次会议将在一个幸运的时机到来,量子拓扑学的旧思想与新思想相遇。会议网站可在http://vietnam2013.gatech.edu/上找到。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stavros Garoufalidis其他文献
A Quantum trace map for 3-manifolds
3 流形的量子迹图
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis;Tao Yu - 通讯作者:
Tao Yu
The Århus integral of rational homology 3-spheres II: Invariance and universality
有理同调 3 域的 Århus 积分 II:不变性和普遍性
- DOI:
10.1007/s00029-002-8109-z - 发表时间:
1998 - 期刊:
- 影响因子:0
- 作者:
D. Bar;Stavros Garoufalidis;L. Rozansky;Dylan Thurston - 通讯作者:
Dylan Thurston
DIFFERENCE AND DIFFERENTIAL EQUATIONS FOR THE COLORED JONES FUNCTION
有色琼斯函数的差分和微分方程
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis - 通讯作者:
Stavros Garoufalidis
Perturbative invariants of cusped hyperbolic 3-manifolds
尖点双曲 3 流形的微扰不变量
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis;Matthias Storzer;Campbell Wheeler - 通讯作者:
Campbell Wheeler
The sl3 Jones polynomial of the trefoil: A case study of q-holonomic sequences
三叶草的 sl3 琼斯多项式:q 完整序列的案例研究
- DOI:
10.1016/j.aam.2011.04.001 - 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Stavros Garoufalidis;Christoph Koutschan - 通讯作者:
Christoph Koutschan
Stavros Garoufalidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stavros Garoufalidis', 18)}}的其他基金
The Geometry, Topology and Number Theory of the Jones Polynomial
琼斯多项式的几何、拓扑和数论
- 批准号:
1406419 - 财政年份:2014
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Spring School in Geometry and Quantum Topology
几何与量子拓扑春季学校
- 批准号:
1106739 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
The Geometry, Topology, Asymptotics and Number Theory of the Jones Polynomial
琼斯多项式的几何、拓扑、渐近和数论
- 批准号:
1105678 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
The Geometry, Topology and Asymptotics of the Jones Polynomial
琼斯多项式的几何、拓扑和渐近
- 批准号:
0805078 - 财政年份:2008
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
The Geometry and Topology of the Jones Polynomial
琼斯多项式的几何和拓扑
- 批准号:
0505445 - 财政年份:2005
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Chern-Simons Theory, and Its Limiting Geometry and Topology
陈-西蒙斯理论及其极限几何和拓扑
- 批准号:
0203129 - 财政年份:2002
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
相似海外基金
Smooth 4-Manifold Topology, 3-Manifold Group Actions, the Heegaard Tree, and Low Volume Hyperbolic 3-Manifolds
平滑 4 流形拓扑、3 流形组动作、Heegaard 树和低容量双曲 3 流形
- 批准号:
2003892 - 财政年份:2020
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
- 批准号:
1912700 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Quantum invariants and hyperbolic manifolds in three-dimensional topology
三维拓扑中的量子不变量和双曲流形
- 批准号:
DP160103085 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Discovery Projects
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Classical and quantum hyperbolic geometry and topology
经典和量子双曲几何和拓扑
- 批准号:
1522850 - 财政年份:2015
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
- 批准号:
1201463 - 财政年份:2012
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1240329 - 财政年份:2011
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant
Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
- 批准号:
1005973 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Continuing Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1007175 - 财政年份:2010
- 资助金额:
$ 2.5万 - 项目类别:
Standard Grant