Hyperbolic geometry, topology and dynamics
双曲几何、拓扑和动力学
基本信息
- 批准号:1005973
- 负责人:
- 金额:$ 41.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-07-01 至 2014-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-1005973Principal Investigator: Yair MinskyThe PI proposes to investigate a number of different aspects of hyperbolic geometry in 2 and 3 dimensions, the structure of the representation spaces that parametrize these geometric systems, and the dynamics of the groups that act on them. The SL(2,C)-character variety, X(F), of a group F parametrizes conjugacy classes of representations of F into SL(2,C), the isometry group of hyperbolic 3-space. Discrete faithful elements of X(F) correspond to hyperbolic 3-manifolds, and the PI will work to understand better the interaction between topological and geometric features of these manifolds, as well as the structure of the discrete-faithful locus itself. In addition, he will pursue a study of X(F) as a whole, considered as a dynamical system under the action of the outer automorphism group of F (particularly when F is a free group). A new dynamical decomposition of X(F) was recently discovered, whose structure seems to be rich and relatively unexplored. In addition the PI will study geometric aspects of Teichmuller spaces, which parametrize hyperbolic structures in two dimensions, and of Mapping Class Groups, their natural automorphism groups.The interactions between geometry, topology and dynamics play a entral role in mathematics as well as its applications. A geometric space, such as our own universe or the configuration space of some system, may admit dynamical phenomena such as flows, iterations or group actions. The behavior of these phenomena, as well as the geometry of the space, can be strongly influenced by its topological structure, namely the underlying connective tissue on which the geometry is overlaid. Furthermore, we often find that geometry and dynamics persist at higher levels of abstraction: the collection of all geometric structures on a given space can itself be organized into a new "higher" space, with its own geometry and its own inherent symmetries which give rise to dynamical structure. The interaction between these phenomena at different levels can enrich our insight about the original systems. The PI's own research focuses on particular instances of this general template, namely the geometry and topology of 2- and 3- dimensional spaces, and the corresponding dynamics for their higher parameter spaces. This low-dimensional setting is particularly amenable to our intuition and is partly motivated by direct visual analogies with our physical world, but it also happens, for a variety of reasons, to be a meeting place for a number of different areas of mathematics as well as physics, so that a fuller understanding in this domain can enrich, by analogy as well as direct mathematical connection, our approaches to other parts of mathematics. This award is to be funded jointly by the programs in Topology, Geometric Analysis, and Analysis.
AbstractAward:DMS-1005973首席研究员:Yair Minsky PI建议研究二维和三维双曲几何的许多不同方面,参数化这些几何系统的表示空间的结构,以及作用于它们的群体的动力学。 群F的SL(2,C)-特征簇X(F)将F的表示的共轭类参数化为SL(2,C),即双曲三维空间的等距群。X(F)的离散忠实元素对应于双曲三维流形,PI将更好地理解这些流形的拓扑和几何特征之间的相互作用,以及离散忠实轨迹本身的结构。此外,他将继续研究X(F)作为一个整体,被认为是一个动力系统的作用下的外自同构群的F(特别是当F是一个自由群)。最近发现了X(F)的一个新的动力学分解,它的结构似乎是丰富的和相对未探索的。此外,PI还将研究Teichmuller空间的几何方面,其中参数化二维双曲结构,以及映射类群,它们的自然自同构群。几何,拓扑和动力学之间的相互作用在数学及其应用中起着中心作用。一个几何空间,比如我们自己的宇宙或某个系统的构形空间,可能会接纳流动、迭代或群作用等动力学现象。这些现象的行为,以及空间的几何形状,可以强烈地受到其拓扑结构的影响,即几何形状覆盖的底层结缔组织。此外,我们经常发现几何和动力学在更高的抽象层次上持续存在:给定空间上的所有几何结构的集合本身可以组织成一个新的“更高”空间,具有自己的几何和自己固有的对称性,这些对称性产生了动力学结构。这些现象在不同层次上的相互作用可以丰富我们对原始系统的认识。PI自己的研究集中在这个一般模板的特定实例上,即2维和3维空间的几何和拓扑,以及它们的更高参数空间的相应动力学。这种低维环境特别符合我们的直觉,部分原因是与我们的物理世界直接的视觉类比,但由于各种原因,它也恰好是数学和物理学的一些不同领域的聚会场所,因此,通过类比和直接的数学联系,我们对数学其他部分的理解该奖项将由拓扑学,几何分析和分析计划共同资助。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yair Minsky其他文献
Yair Minsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yair Minsky', 18)}}的其他基金
Deformation, topology and geometry in low dimensions
低维变形、拓扑和几何
- 批准号:
2005328 - 财政年份:2020
- 资助金额:
$ 41.1万 - 项目类别:
Continuing Grant
Properly Discontinuous Actions on Homogeneous Spaces
均匀空间上的适当不连续动作
- 批准号:
1709952 - 财政年份:2017
- 资助金额:
$ 41.1万 - 项目类别:
Continuing Grant
Structure and Deformation in Low-Dimensional Topology
低维拓扑中的结构和变形
- 批准号:
1610827 - 财政年份:2016
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Geometry on Groups and Spaces, August 7-12, 2014
群与空间的几何,2014 年 8 月 7-12 日
- 批准号:
1431070 - 财政年份:2014
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
The Sixth Ahlfors-Bers Colloquium
第六届 Ahlfors-Bers 研讨会
- 批准号:
1444972 - 财政年份:2014
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
COMPLEXITY AND RIGIDITY IN LOW DIMENSIONAL GEOMETRY
低维几何的复杂性和刚性
- 批准号:
1311844 - 财政年份:2013
- 资助金额:
$ 41.1万 - 项目类别:
Continuing Grant
Challenges in Geometry, Analysis and Computation: High Dimensional Synthesis
几何、分析和计算方面的挑战:高维综合
- 批准号:
1207829 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
FRG:Collaborative Research: Deformation spaces of geometric structures
FRG:合作研究:几何结构的变形空间
- 批准号:
1065872 - 财政年份:2011
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Focused Research Group: Collaborative Research: Geometry and Deformation Theory of Hyperbolic 3-Manifolds
重点研究组:合作研究:双曲3流形的几何与变形理论
- 批准号:
0554321 - 财政年份:2006
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
相似国自然基金
2019年度国际理论物理中心-ICTP School on Geometry and Gravity (smr 3311)
- 批准号:11981240404
- 批准年份:2019
- 资助金额:1.5 万元
- 项目类别:国际(地区)合作与交流项目
新型IIIB、IVB 族元素手性CGC金属有机化合物(Constrained-Geometry Complexes)的合成及反应性研究
- 批准号:20602003
- 批准年份:2006
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
- 批准号:
1912700 - 财政年份:2019
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
RUI: Knots in Three-Dimensional Manifolds: Quantum Topology, Hyperbolic Geometry, and Applications
RUI:三维流形中的结:量子拓扑、双曲几何和应用
- 批准号:
1906323 - 财政年份:2019
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Hyperbolic Geometry, Heegaard Surfaces, Foliation/Lamination Theory, and Smooth Four-Dimensional Topology
双曲几何、Heegaard 曲面、叶状/层状理论和平滑四维拓扑
- 批准号:
1607374 - 财政年份:2016
- 资助金额:
$ 41.1万 - 项目类别:
Continuing Grant
Classical and quantum hyperbolic geometry and topology
经典和量子双曲几何和拓扑
- 批准号:
1522850 - 财政年份:2015
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Quantum Topology and Hyperbolic Geometry
量子拓扑和双曲几何
- 批准号:
1251399 - 财政年份:2013
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Geometry and topology of curves and surfaces in closed hyperbolic manifolds
闭双曲流形中曲线和曲面的几何和拓扑
- 批准号:
1201463 - 财政年份:2012
- 资助金额:
$ 41.1万 - 项目类别:
Continuing Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1240329 - 财政年份:2011
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Geometry and topology of hyperbolic 3-manifolds
双曲3流形的几何和拓扑
- 批准号:
1007175 - 财政年份:2010
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Geometry and topology of hyperbolic manifolds
双曲流形的几何和拓扑
- 批准号:
0904355 - 财政年份:2009
- 资助金额:
$ 41.1万 - 项目类别:
Standard Grant
Topology, geometry and arithmetic of hyperbolic 3-manifolds
双曲3流形的拓扑、几何和算术
- 批准号:
0906155 - 财政年份:2009
- 资助金额:
$ 41.1万 - 项目类别:
Continuing Grant