EFRI-BioFlex: Miniature, low-cost fiber-optics technology for measurement of tissue structure at sub-diffractional length scales: a platform for cancer screening

EFRI-BioFlex:用于在亚衍射长度尺度上测量组织结构的微型、低成本光纤技术:癌症筛查平台

基本信息

  • 批准号:
    1240416
  • 负责人:
  • 金额:
    $ 200万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-08-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

This project is at the interface of biophotonics, electronics and computational electrodynamics with applications to medicine. The main thrust is the development of a principally new disposable, low-cost, miniature fiber-optics probe technology that would enable minimally or non-invasive population screening for major cancers while being comfortable to patients, enabling a major improvement in diagnostic accuracy, and reducing health care costs. Intellectual Merit: From the engineering perspective, the key areas of innovation are biophotonics and computational electromagnetics. The underlying biophotonics technology is Low-coherence Enhanced Backscattering Spectroscopy. The major technological advantages are miniaturization and the ability to depth-selectively quantify sub-diffractional (down to a few tens of nanometers) structure of live tissue, which is impossible with existing endoscopic or fiber-optic tools. In its application to cancer screening, the proposed approach takes advantage of the concept of field carcinogenesis, the notion that, initially, molecular/nanostructural alterations develop diffusely throughout an affected organ while further stochastic mutations lead to focal tumors. Thus, a cancer risk can be assessed by non-invasive analysis of tissue ultrastructure from an easily accessible surrogate site, such as the rectum for colon cancer, cheek mucosa for lung cancer, duodenal mucosa for pancreatic cancer, endocervix for ovarian cancer, etc. The project has three aims: (1) Development of a new paradigm for linking the ultrastructural and optical properties of tissue based on the Finite-Difference Time-Domain modeling of light-tissue interactions with nanoscale detail. Stochastic Finite-Difference Time-Domain simulation, a principally new approach to numerically solving Maxwell?s equations and modeling light transport in tissue of arbitrary complexity, will be developed. (2) Development of the miniature Low-coherence Enhanced Backscattering Spectroscopy probe. The design is a radical departure from other fiber-optics probes currently under development for biomedical applications, leveraging micro- and nano-fabrication technology and new sub-millimeter image sensors to produce an integrated device with unprecedented compactness capable of fully resolving the enhanced backscattering peak, and in turn, quantifying nanostructural changes in tissue. (3) Pilot human studies to demonstrate the potential clinical impact of the technology. Broader Impact:Although it is well accepted that cancer screening can dramatically decrease cancer mortality, no population screening exists for the majority of cancers. This is because existing techniques require examination of already formed cancerous or pre-cancerous lesions through interventional procedures (colonoscopy, endoscopy, bronchoscopy, etc.) and suffer from some of the following drawbacks: invasiveness, expense, low patient tolerance, or low sensitivity to curable lesions. The proposed technology may lead to a new paradigm in cancer screening that would be applicable to essentially any major cancer type and, due to its low-cost and high patient tolerance, can actually be used in the entire population. Furthermore, the implementation of the technology has the potential to dramatically reduce health care costs by identifying early preventable neoplastic lesions or early, readily treatable cancers. The project will also help increase the exposure of middle and high school students from underrepresented minority groups and inner-city schools to engineering, science and technology.
这个项目是在生物光子学,电子学和计算电动力学与医学应用的接口。其主要目标是开发一种新型的一次性、低成本、微型光纤探头技术,该技术将能够对主要癌症进行微创或非侵入性人群筛查,同时对患者感到舒适,从而大大提高诊断准确性,并降低医疗保健成本。智力优势:从工程的角度来看,创新的关键领域是生物光子学和计算电磁学。基本的生物光子学技术是低相干增强后向散射光谱学。主要的技术优势是小型化和深度选择性量化活组织的亚衍射(低至几十纳米)结构的能力,这是现有内窥镜或光纤工具无法实现的。在癌症筛查的应用中,所提出的方法利用了场致癌的概念,即最初,分子/纳米结构改变在整个受影响的器官中扩散发展,而进一步的随机突变导致局灶性肿瘤。因此,可以通过对容易接近的替代部位的组织超微结构进行非侵入性分析来评估癌症风险,例如对结肠癌进行直肠分析,对肺癌进行颊粘膜分析,对胰腺癌进行十二指肠粘膜分析,对卵巢癌进行子宫颈内膜分析等。(1)开发一种新的范例,用于基于光的时域差分建模将组织的超微结构和光学性质联系起来,组织相互作用的纳米级细节。随机时域差分模拟,一个主要的新方法,数值求解麦克斯韦?的方程和模拟光传输的任意复杂的组织,将开发。 (2)小型低相干增强背散射光谱探头的研制。该设计与目前正在开发的用于生物医学应用的其他光纤探头完全不同,利用微米和纳米制造技术以及新的亚毫米图像传感器来生产具有前所未有的紧凑性的集成设备,能够完全解决增强的后向散射峰,进而量化组织中的纳米结构变化。 (3)进行初步人体研究,以证明该技术的潜在临床影响。更广泛的影响:虽然癌症筛查可以大大降低癌症死亡率是公认的,但大多数癌症都没有人群筛查。这是因为现有技术需要通过介入程序(结肠镜检查、内窥镜检查、支气管镜检查等)检查已经形成的癌性或癌前病变。并且具有以下一些缺点:侵入性、费用、患者耐受性低或对可治愈损伤的敏感性低。该技术可能会导致癌症筛查的新模式,基本上适用于任何主要癌症类型,并且由于其低成本和高患者耐受性,实际上可以用于整个人群。此外,该技术的实施有可能通过识别早期可预防的肿瘤病变或早期可治疗的癌症来大幅降低医疗保健成本。该项目还将帮助来自代表性不足的少数群体和市中心学校的中学生更多地接触工程、科学和技术。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vadim Backman其他文献

Sa1712 Differential Effects of Tumor-Promoting and Tumor-Inhibiting Dietary Fats on Angiogenesis in Normal and Tumor-Bearing Colon
  • DOI:
    10.1016/s0016-5085(13)61025-2
  • 发表时间:
    2013-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Vani J. Konda;Mariano Gonzalez-Haba Ruiz;Sarah Ruderman;Vesta Valuckaite;Urszula Dougherty;Reba Mustafi;Anirudh Kulkarni;Tiffany Chua;Irving Waxman;Vadim Backman;John Hart;Marc Bissonnette
  • 通讯作者:
    Marc Bissonnette
Influence of Micropillar Induced Deformation on Chromatin Architecture in Regulating Stem Cell Differentiation
  • DOI:
    10.1016/j.bpj.2019.11.2999
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Vasundhara Agrawal;Xinlong Wang;Guillermo Ameer;Vadim Backman
  • 通讯作者:
    Vadim Backman
Differential unfolded protein response regulation in KRAS silencing sensitive and innately resistant colorectal cancer cells
KRAS 沉默敏感和先天耐药结直肠癌细胞中差异展开的蛋白反应调节
  • DOI:
    10.1038/s41598-025-94549-2
  • 发表时间:
    2025-04-24
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Flávia Martins;Ana L. Machado;Joana Carvalho;Catarina R. Almeida;Hans C. Beck;Ana S. Carvalho;Vadim Backman;Rune Matthiesen;Sérgia Velho
  • 通讯作者:
    Sérgia Velho
Bridging Chromatin Nanoimaging and Molecular Modeling: Chromatin Packing as a Regulator of Transcriptional Heterogeneity in Carcinogenesis
  • DOI:
    10.1016/j.bpj.2019.11.3007
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Vadim Backman
  • 通讯作者:
    Vadim Backman
Large-Scale Heteropolymer Model of Chromatin Dynamics and Mechanics
  • DOI:
    10.1016/j.bpj.2019.11.3011
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Anne Shim;Kai Huang;Vadim Backman;Igal Szleifer
  • 通讯作者:
    Igal Szleifer

Vadim Backman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vadim Backman', 18)}}的其他基金

EFRI CEE: Macrogenomic engineering via modulation of chromatin nanoenvironment
EFRI CEE:通过调节染色质纳米环境进行宏观基因组工程
  • 批准号:
    1830961
  • 财政年份:
    2018
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EAGER: New Biophotonics and Computational Molecular Dynamics for Understanding Epigenetic Regulation of Gene Transcription
EAGER:新生物光子学和计算分子动力学用于理解基因转录的表观遗传调控
  • 批准号:
    1249311
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
MRI-R2: Development of biophotonics instrumentation for sensing subcellular structure at nanoscale
MRI-R2:开发用于传感纳米级亚细胞结构的生物光子学仪器
  • 批准号:
    0960148
  • 财政年份:
    2010
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EAGER: BISH: Biophotonics Technique for Detection of Lung Cancer
EAGER:BISH:用于检测肺癌的生物光子学技术
  • 批准号:
    0939778
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BSBA: Photonic Technique for Sensing and Understanding Subcellular Structures at Nanoscale
EFRI-BSBA:用于传感和理解纳米级亚细胞结构的光子技术
  • 批准号:
    0937987
  • 财政年份:
    2009
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
SGER: Biophotonics for Diagnosis of Pancreatic Cancer
SGER:用于诊断胰腺癌的生物光子学
  • 批准号:
    0733868
  • 财政年份:
    2007
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
SGER: Biophotonics Techniques for Accurate Diagnosis of Pancreatic Cancer
SGER:准确诊断胰腺癌的生物光子学技术
  • 批准号:
    0620303
  • 财政年份:
    2006
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
Biophotonics: Towards Nondestructive Optical Analysis of Nanostructures Using Photonic Nanojets
生物光子学:利用光子纳米喷射对纳米结构进行无损光学分析
  • 批准号:
    0522639
  • 财政年份:
    2005
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
SGER: Noninvasive Detection of Pancreatic Cancer Using Biophotonics Techniques
SGER:利用生物光子技术无创检测胰腺癌
  • 批准号:
    0547480
  • 财政年份:
    2005
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
SGER: Development of Minimally Invasive Optical Technique for Early Detection of Pancreatic Cancer
SGER:开发用于早期检测胰腺癌的微创光学技术
  • 批准号:
    0417689
  • 财政年份:
    2004
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant

相似海外基金

EFRI-BioFlex: A Flexible Glucose Fuel Cell
EFRI-BioFlex:灵活的葡萄糖燃料电池
  • 批准号:
    1606406
  • 财政年份:
    2015
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BioFlex: Electrically Mediated Complex Tissue Regeneration
EFRI BioFlex:电介导的复杂组织再生
  • 批准号:
    1332329
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Cellphone-based Digital Immunoassay Platform for High-throughput Sensitive and Multiplexed Detection and Distributed Spatio-Temporal Analysis of Influenza
EFRI-BioFlex:基于手机的数字免疫分析平台,用于流感的高通量灵敏多重检测和分布式时空分析
  • 批准号:
    1332275
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Hybrid polymer-paper based multi-sensor implants for continuous remote monitoring
EFRI-BioFlex:基于混合聚合物纸的多传感器植入物,用于连续远程监控
  • 批准号:
    1332394
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: A Flexible Glucose Fuel Cell
EFRI-BioFlex:灵活的葡萄糖燃料电池
  • 批准号:
    1332250
  • 财政年份:
    2013
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFlex: Rapid Identification of Blood, Urine, and Saliva Toxins and Bacterial Infections with a SERS/LSS Flexible System
EFRI-BioFlex:使用 SERS/LSS 灵活系统快速识别血液、尿液和唾液毒素以及细菌感染
  • 批准号:
    1240410
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI-BioFLEX: Tissue Engineered Flexible Sensors, Actuators and Electronics for Chronic Wound Management
EFRI-BioFLEX:用于慢性伤口管理的组织工程柔性传感器、执行器和电子设备
  • 批准号:
    1240443
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
EFRI BioFlex: Flexible Resorbable Organic and Nanomaterial Therapeutic Systems (FRONTS)
EFRI BioFlex:灵活的可吸收有机和纳米材料治疗系统 (FRONTS)
  • 批准号:
    1240380
  • 财政年份:
    2012
  • 资助金额:
    $ 200万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了