Index Theory of Hypoelliptic Fredholm Operators
亚椭圆Fredholm算子的指数论
基本信息
- 批准号:1244976
- 负责人:
- 金额:$ 8.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2012
- 资助国家:美国
- 起止时间:2012-06-01 至 2014-10-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project will explore the index theory of hypoelliptic operators. The principal investigator will apply and develop methods of noncommutative geometry to study the index theory of hypoelliptic Fredholm operators associated to various geometric structures (most notably contact structures and foliations). His belief is that the results will pay off in two directions: hypoelliptic operators provide examples of phenomena not exhibited by elliptic operators, yielding new insights that further the development of index theory itself, and, conversely, index formulas of hypoelliptic operators will lead to new results in geometry. A specific aim of the project is to develop new applications of index theory to contact geometry.In the early 1960s the British mathematician Michael Atiyah and the American mathematician Isodore Singer derived an important formula. The "Atiyah-Singer index formula" established a deep connection between two central branches of mathematics: analysis (the modern version of differential and integral calculus) and topology/geometry (the study of higher dimensional curved space). The index formula subsumed several important classical results and has subsequently led to numerous applications and new developments in many areas of mathematics as well as in theoretical physics. The continued relevance of index theory is evidenced, for example, by the very recent proof of the celebrated "Weinstein conjecture," which says that (under certain mild hypotheses) every mechanical arrangement of moving objects (a "dynamical system") can be configured in such a way that the collective motion of the system will exactly repeat itself after a finite time-interval. The proof of this theorem makes use, in crucial places, of the formula of Atiyah and Singer. This project extends the applicability of index formulas to a large new class of problems that were not covered by the original theory. Ideas from the emerging area of noncommutative geometry (a recent and radical revision of the foundation concepts of geometry inspired by quantum theory) play a central role in this work. This project establishes substantial new connections between separate branches of pure mathematics, and it opens up a new area of application of the index formula that has been crucial to the development of mathematics for the last fifty years.
该项目将探索亚椭圆算子的指数理论。首席研究员将应用和开发非交换几何方法来研究与各种几何结构(最显着的是接触结构和叶状结构)相关的亚椭圆 Fredholm 算子的指数理论。他相信结果将在两个方向上得到回报:亚椭圆算子提供了椭圆算子未表现出的现象的例子,产生了新的见解,进一步发展了指数理论本身;相反,亚椭圆算子的指数公式将带来几何学的新结果。该项目的一个具体目标是开发索引理论在接触几何中的新应用。 20 世纪 60 年代初,英国数学家 Michael Atiyah 和美国数学家 Isodore Singer 推导出了一个重要的公式。 “Atiyah-Singer 指数公式”在数学的两个中心分支之间建立了深刻的联系:分析(微分和积分的现代版本)和拓扑/几何(高维弯曲空间的研究)。该指数公式包含了几个重要的经典结果,随后在数学和理论物理的许多领域产生了众多的应用和新的发展。例如,最近著名的“韦恩斯坦猜想”的证明证明了指数理论的持续相关性,该猜想说(在某些温和的假设下)运动物体的每个机械排列(“动力系统”)都可以以这样的方式配置,即系统的集体运动将在有限的时间间隔后精确地重复自身。该定理的证明在关键地方使用了 Atiyah 和 Singer 的公式。该项目将指数公式的适用性扩展到原始理论未涵盖的一大类新问题。来自非交换几何新兴领域的思想(受量子理论启发对几何基本概念的最新彻底修订)在这项工作中发挥着核心作用。该项目在纯数学的不同分支之间建立了实质性的新联系,并开辟了指数公式的新应用领域,该公式在过去五十年中对数学的发展至关重要。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Johannes van Erp其他文献
Johannes van Erp的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Johannes van Erp', 18)}}的其他基金
Index Theory of Hypoelliptic Fredholm Operators
亚椭圆Fredholm算子的指数论
- 批准号:
1442370 - 财政年份:2013
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Index Theory of Hypoelliptic Fredholm Operators
亚椭圆Fredholm算子的指数论
- 批准号:
1100570 - 财政年份:2011
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
基于isomorph theory研究尘埃等离子体物理量的微观动力学机制
- 批准号:12247163
- 批准年份:2022
- 资助金额:18.00 万元
- 项目类别:专项项目
Toward a general theory of intermittent aeolian and fluvial nonsuspended sediment transport
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:
英文专著《FRACTIONAL INTEGRALS AND DERIVATIVES: Theory and Applications》的翻译
- 批准号:12126512
- 批准年份:2021
- 资助金额:12.0 万元
- 项目类别:数学天元基金项目
基于Restriction-Centered Theory的自然语言模糊语义理论研究及应用
- 批准号:61671064
- 批准年份:2016
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
EAGER: Generalizing Monin-Obukhov Similarity Theory (MOST)-based Surface Layer Parameterizations for Turbulence Resolving Earth System Models (ESMs)
EAGER:将基于 Monin-Obukhov 相似理论 (MOST) 的表面层参数化推广到湍流解析地球系统模型 (ESM)
- 批准号:
2414424 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Conference: 9th Lake Michigan Workshop on Combinatorics and Graph Theory
会议:第九届密歇根湖组合学和图论研讨会
- 批准号:
2349004 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
REU Site: Computational Number Theory
REU 网站:计算数论
- 批准号:
2349174 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
Testing Theorems in Analytic Function Theory, Harmonic Analysis and Operator Theory
解析函数论、调和分析和算子理论中的检验定理
- 批准号:
2349868 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Conference: PDE in Moab: Advances in Theory and Application
会议:摩押偏微分方程:理论与应用的进展
- 批准号:
2350128 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Conference: Arithmetic quantum field theory
会议:算术量子场论
- 批准号:
2400553 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Standard Grant
Spheres of Influence: Arithmetic Geometry and Chromatic Homotopy Theory
影响范围:算术几何和色同伦理论
- 批准号:
2401472 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant
Wonderful Varieties, Hyperplane Arrangements, and Poisson Representation Theory
奇妙的品种、超平面排列和泊松表示论
- 批准号:
2401514 - 财政年份:2024
- 资助金额:
$ 8.74万 - 项目类别:
Continuing Grant