RTG: Algebraic and Arithmetic Geometry at the University of Illinois at Chicago
RTG:伊利诺伊大学芝加哥分校的代数与算术几何
基本信息
- 批准号:1246844
- 负责人:
- 金额:$ 248.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2021-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The PI and the co-PIs are planning to establish a Research Training Group in Algebraic Geometry and Arithmetic Geometry at the University of Illinois at Chicago. The goal of the project is to increase the proportion of US citizens and permanent residents that will be educated in mathematical research and well prepared to pursue careers in the mathematical sciences. The project includes the mentoring of undergraduate students, graduate students and postdoctoral researchers. The PIs will work to develop a research program for undergraduate majors, as part of their degree program in mathematics. Series of mini-seminars, learning workshops, and conferences are planned to enhance the research experiences of the postdoctoral researchers and graduate students. The PIs have planned conferences on the applications of model theory, arithmetic geometry and dynamics, and algebraic geometry. The fields of algebraic and arithmetic geometry are among the most fundamental, diverse and active areas of research mathematics. Algebraic and arithmetic geometers study the properties of geometric objects defined by algebraic equations, using tools from algebra, analysis and topology. Beginning with analytic geometry and elementary properties of numbers, techniques in algebraic and arithmetic geometry have developed into important tools for solutions of outstanding problems in number theory and complex geometry, string theory in mathematical physics, cryptography and computer-aided geometric design. The goals of the Research Training Group of Algebraic and Arithmetic Geometry at the University of Illinois at Chicago are to recruit, to train and to develop young scientists who are US citizens and permanent residents to become researchers in this very interesting and active area of mathematics.
PI和co-PI计划在芝加哥的伊利诺伊大学建立一个代数几何和算术几何的研究培训小组。该项目的目标是增加接受数学研究教育并为从事数学科学职业做好充分准备的美国公民和永久居民的比例。该项目包括指导本科生、研究生和博士后研究人员。PI将致力于为本科专业开发研究计划,作为其数学学位课程的一部分。 计划举办一系列小型研讨会、学习讲习班和会议,以增强博士后研究人员和研究生的研究经验。 PI已经计划了关于模型理论、算术几何和动力学以及代数几何应用的会议。代数和算术几何领域是数学研究中最基本、最多样化和最活跃的领域之一。 代数学和算术几何学研究由代数方程定义的几何对象的属性,使用代数,分析和拓扑学的工具。 从解析几何和数字的基本性质开始,代数和算术几何的技术已经发展成为解决数论和复几何、数学物理中的弦理论、密码学和计算机辅助几何设计中突出问题的重要工具。 该研究培训小组的目标是代数和算术几何在伊利诺伊大学芝加哥是招聘,培训和发展青年科学家谁是美国公民和永久居民成为研究人员在这个非常有趣和活跃的数学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Ein其他文献
Generalized null correlation bundles
广义零相关束
- DOI:
10.1017/s0027763000000970 - 发表时间:
1988 - 期刊:
- 影响因子:0.8
- 作者:
Lawrence Ein - 通讯作者:
Lawrence Ein
Application of jet schemes to singularities in positive characteristic
喷射方案在正特性奇点中的应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
Introduction to Singularities (2nd edition)
奇点简介(第二版)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
Generic residual intersections and its applications
通用残差交集及其应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
On finite determinations of MJ-minimal log discrepancies
MJ-最小对数差异的有限确定
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
Lawrence Ein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Ein', 18)}}的其他基金
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265289 - 财政年份:2013
- 资助金额:
$ 248.9万 - 项目类别:
Standard Grant
Singularities of Pairs and Linear Systems
偶对和线性系统的奇异性
- 批准号:
0700774 - 财政年份:2007
- 资助金额:
$ 248.9万 - 项目类别:
Continuing Grant
Linear Systems on Higher Dimensional Varieties
高维变量的线性系统
- 批准号:
0200278 - 财政年份:2002
- 资助金额:
$ 248.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Algebraic Geometry
数学科学:代数几何专题
- 批准号:
9622546 - 财政年份:1996
- 资助金额:
$ 248.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Linear Systems on Higher Dimensional Varieties
数学科学:高维簇上的线性系统
- 批准号:
9302512 - 财政年份:1993
- 资助金额:
$ 248.9万 - 项目类别:
Continuing Grant
Mathematical Sciences: Vector Bundles, Vanishing Theorems, and Syzygies
数学科学:向量丛、消失定理和 Syzygies
- 批准号:
9105183 - 财政年份:1991
- 资助金额:
$ 248.9万 - 项目类别:
Continuing Grant
相似国自然基金
同伦和Hodge理论的方法在Algebraic Cycle中的应用
- 批准号:11171234
- 批准年份:2011
- 资助金额:40.0 万元
- 项目类别:面上项目
相似海外基金
Algebraic Structures and the Arithmetic of Fields
代数结构和域的算术
- 批准号:
2401018 - 财政年份:2023
- 资助金额:
$ 248.9万 - 项目类别:
Continuing Grant
Conference on Arithmetic Geometry and Algebraic Groups
算术几何与代数群会议
- 批准号:
2305231 - 财政年份:2023
- 资助金额:
$ 248.9万 - 项目类别:
Standard Grant
RTG: Arithmetic, Combinatorics, and Topology of Algebraic Varieties
RTG:代数簇的算术、组合学和拓扑
- 批准号:
2231565 - 财政年份:2023
- 资助金额:
$ 248.9万 - 项目类别:
Continuing Grant
Anabelian methods in arithmetic and algebraic geometry
算术和代数几何中的阿纳贝尔方法
- 批准号:
RGPIN-2022-03116 - 财政年份:2022
- 资助金额:
$ 248.9万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic geometry and algebraic number theory
算术几何与代数数论
- 批准号:
CRC-2017-00306 - 财政年份:2022
- 资助金额:
$ 248.9万 - 项目类别:
Canada Research Chairs
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
DGECR-2022-00444 - 财政年份:2022
- 资助金额:
$ 248.9万 - 项目类别:
Discovery Launch Supplement
Arithmetic Questions in the Theory of Linear Algebraic Groups
线性代数群理论中的算术问题
- 批准号:
2154408 - 财政年份:2022
- 资助金额:
$ 248.9万 - 项目类别:
Standard Grant
Derived categories in arithmetic and algebraic geometry
算术和代数几何的派生范畴
- 批准号:
RGPIN-2022-03461 - 财政年份:2022
- 资助金额:
$ 248.9万 - 项目类别:
Discovery Grants Program - Individual
Arithmetic Algebraic Geometry
算术代数几何
- 批准号:
RGPIN-2018-06094 - 财政年份:2022
- 资助金额:
$ 248.9万 - 项目类别:
Discovery Grants Program - Individual
Algebraic and Arithmetic Geometry via Stacks
通过堆栈学习代数和算术几何
- 批准号:
RGPIN-2022-02980 - 财政年份:2022
- 资助金额:
$ 248.9万 - 项目类别:
Discovery Grants Program - Individual