Higher Dimensional Algebraic Geometry
高维代数几何
基本信息
- 批准号:1001336
- 负责人:
- 金额:$ 43.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-05-15 至 2016-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This is a project on algebraic geometry. Algebraic geometry studies properties of algebraic varieties, which are geometric objects defined by algebraic equations. Classically, algebraic geometers understood the geometry of algebraic curves and surfaces. But the geometry of varieties of dimension three or higher remains rather mysterious. The goals of this project are to study the properties of the equations defining these varieties and investigate the properties of the spaces of cycles. Another main difficulty of studying higher dimensional varieties is that it seems singularities are unavoidable when one studies birational geometry of varieties of dimension three or higher. Ein proposes to use various new technical tools to study the invariants that measure the complexity of these singularities. The new techniques involve the geometry of the arc spaces, generic limits and multiplier ideals from complex analysis. These numerical invariants also occur naturally in questions on birational rigidity, the theory of D-modules and positive characteristic commutative algebra. The appearance of the same invariants in so many different areas of mathematics is surprising. One of the goals of this proposal is to understand the links of these different aspects better.Algebraic geometry is one of the oldest disciplines in mathematics. In recent years, mathematicians have found that there are many important applications of algebraic geometry to mathematical physics, number theory topology and cryptography. The intellectual impacts of the proposal are on finding new scientific results and gaining a deeper understanding of the geometry of higher dimensional algebraic varieties. In particular, Ein plans to study syzygies, spaces of higher co-dimensional cycles and the singularities that occur naturally in studying higher dimensional birational geometry.
这是一个关于代数几何的项目。代数几何研究代数簇的性质,代数簇是由代数方程定义的几何对象。传统上,代数几何学家了解代数曲线和曲面的几何。但三维或更高维度的各种几何形状仍然相当神秘。这个项目的目标是研究定义这些簇的方程的性质,并调查圈空间的性质。研究高维簇的另一个主要困难是,当研究三维或更高维簇的二次几何时,奇点似乎是不可避免的。Ein建议使用各种新的技术工具来研究衡量这些奇点复杂性的不变量。新技术涉及弧空间的几何、一般极限和复数分析中的乘子理想。这些数值不变量也自然地出现在关于二元刚性、D-模理论和正特征交换代数的问题中。同样的不变量出现在这么多不同的数学领域令人惊讶。这项建议的目的之一是更好地理解这些不同方面的联系。代数几何是数学中最古老的学科之一。近年来,数学家们发现,代数几何在数学物理、数论拓扑和密码学中有许多重要的应用。这一提议的智力影响在于发现新的科学结果,并加深对高维代数簇几何的理解。尤其是,Ein计划研究合子,即具有更高共维循环的空间,以及在研究更高维双曲面几何时自然出现的奇点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lawrence Ein其他文献
Generalized null correlation bundles
广义零相关束
- DOI:
10.1017/s0027763000000970 - 发表时间:
1988 - 期刊:
- 影响因子:0.8
- 作者:
Lawrence Ein - 通讯作者:
Lawrence Ein
Application of jet schemes to singularities in positive characteristic
喷射方案在正特性奇点中的应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
Introduction to Singularities (2nd edition)
奇点简介(第二版)
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
Generic residual intersections and its applications
通用残差交集及其应用
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
On finite determinations of MJ-minimal log discrepancies
MJ-最小对数差异的有限确定
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Lawrence Ein;Tommaso De Fernex and Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii;Shihoko Ishii - 通讯作者:
Shihoko Ishii
Lawrence Ein的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lawrence Ein', 18)}}的其他基金
RTG: Algebraic and Arithmetic Geometry at the University of Illinois at Chicago
RTG:伊利诺伊大学芝加哥分校的代数与算术几何
- 批准号:
1246844 - 财政年份:2013
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
FRG: Collaborative Research: Birational Geometry and Singularities in Zero and Positive Characteristic
FRG:协作研究:双有理几何和零特征和正特征中的奇点
- 批准号:
1265289 - 财政年份:2013
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Singularities of Pairs and Linear Systems
偶对和线性系统的奇异性
- 批准号:
0700774 - 财政年份:2007
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
Linear Systems on Higher Dimensional Varieties
高维变量的线性系统
- 批准号:
0200278 - 财政年份:2002
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Topics in Algebraic Geometry
数学科学:代数几何专题
- 批准号:
9622546 - 财政年份:1996
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Linear Systems on Higher Dimensional Varieties
数学科学:高维簇上的线性系统
- 批准号:
9302512 - 财政年份:1993
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
Mathematical Sciences: Vector Bundles, Vanishing Theorems, and Syzygies
数学科学:向量丛、消失定理和 Syzygies
- 批准号:
9105183 - 财政年份:1991
- 资助金额:
$ 43.7万 - 项目类别:
Continuing Grant
相似国自然基金
Scalable Learning and Optimization: High-dimensional Models and Online Decision-Making Strategies for Big Data Analysis
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:合作创新研究团队
相似海外基金
Conference: Higher dimensional algebraic geometry
会议:高维代数几何
- 批准号:
2327037 - 财政年份:2023
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2140781 - 财政年份:2021
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Higher Dimensional Algebraic Varieties: Geometry and Arithmetic
高维代数簇:几何和算术
- 批准号:
2001408 - 财政年份:2020
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
JAMI Conference on Higher Dimensional Algebraic Geometry
JAMI 高维代数几何会议
- 批准号:
1933539 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Standard Grant
Arithmetic Geometry via Higher Dimensional Algebraic Geometry
通过高维代数几何的算术几何
- 批准号:
19K14512 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The minimal model theory for higher-dimensional algebraic varieties and singularity theory
高维代数簇的极小模型理论和奇点理论
- 批准号:
19J00046 - 财政年份:2019
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Algebraic topology, higher-dimensional algebras and rewriting
代数拓扑、高维代数和重写
- 批准号:
17F17810 - 财政年份:2017
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Unipotent structure of higher dimensional algebraic varieties and automorphism groups
高维代数簇和自同构群的单能结构
- 批准号:
16K05115 - 财政年份:2016
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Birational geometry for higher-dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H03925 - 财政年份:2016
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Birational geometry of higher dimensional algebraic varieties
高维代数簇的双有理几何
- 批准号:
16H02141 - 财政年份:2016
- 资助金额:
$ 43.7万 - 项目类别:
Grant-in-Aid for Scientific Research (A)