EAGER: Compositional Data Fusion

EAGER:组合数据融合

基本信息

  • 批准号:
    1249822
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-10-01 至 2014-09-30
  • 项目状态:
    已结题

项目摘要

The proposed activity will address two problems: (1) transportability, and (2) data fusion. In the first topic, the project focuses on the problem of utilizing conclusions obtained in one environment in another by permitting reasoning agents to focus their reasoning on only the differences, while taking for granted that which is common to both environments. In the second topic, this project will formalize and reduce to algorithmic procedures the general problem of fusing data coherently from multiple heterogeneous sources. The proposed activities will develop effective procedures for determining whether unbiased estimates of causal relationships in a target environment can be synthesized from information obtained from a set of heterogeneous studies. These activities will lead to a theoretical understanding of the conditions under which a learning system can rely on previously learned information, transferred from a different environment. Results from this research project have the potential to impact all data-related sciences where the transportability and data-fusion problems are ubiquitous. These two problems demand understanding of causal relationships in the domains being considered. Such causal relationships need to be addressed by causal calculi so as to extract the invariant features from each information source. The approach pursued in this project builds on previous work of the PI, for instance, reasoning with structural causal models and counterfactuals. The problems of transportability and data fusion are critical in the health and social sciences, where data is scarce and experiments are costly; they are of particular interest in the "Big Data" enterprise, which is driven by the premise that data availability will automatically result in data interpretability and where there are nuances among the contexts of data collection.
提议的活动将解决两个问题:(1)可移植性,(2)数据融合。在第一个主题中,该项目侧重于在另一个环境中利用在一个环境中获得的结论的问题,允许推理代理将其推理只集中在差异上,同时将两个环境的共同点视为理所当然。在第二个主题中,该项目将形式化并简化为算法程序,以统一地融合来自多个异构源的数据的一般问题。拟议的活动将制定有效的程序,以确定是否可以根据从一系列异质研究中获得的信息综合对目标环境中因果关系的无偏估计。这些活动将导致对学习系统可以依赖先前从不同环境中转移的学习信息的条件的理论理解。该研究项目的结果有可能影响所有与数据相关的科学,在这些科学中,可传输性和数据融合问题无处不在。这两个问题需要理解所考虑的领域中的因果关系。这种因果关系需要通过因果演算来处理,从而从每个信息源中提取不变性特征。本项目所采用的方法建立在PI以前的工作基础上,例如,用结构因果模型和反事实进行推理。在数据稀少、实验费用昂贵的卫生和社会科学领域,可传输性和数据融合问题至关重要;他们对“大数据”企业特别感兴趣,这是由数据可用性将自动导致数据可解释性以及数据收集上下文之间存在细微差别的前提驱动的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Judea Pearl其他文献

On Two Pseudo-Paradoxes in Bayesian Analysis
An economic basis for certain methods of evaluating probabilistic forecasts
  • DOI:
    10.1016/s0020-7373(78)80010-8
  • 发表时间:
    1978-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Judea Pearl
  • 通讯作者:
    Judea Pearl
Logical and algorithmic properties of independence and their application to Bayesian networks

Judea Pearl的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Judea Pearl', 18)}}的其他基金

Collaborative Research: EAGER: RI: Causal Decision-Making
协作研究:EAGER:RI:因果决策
  • 批准号:
    2231798
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RI: Medium: Collaborative Research: Causal Inference: Identification, Learning, and Decision-Making
RI:媒介:协作研究:因果推理:识别、学习和决策
  • 批准号:
    1704932
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RI: Small: Inference with Incomplete Data
RI:小:使用不完整数据进行推理
  • 批准号:
    1527490
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
RI: Small: Probabilistic Networks for Automated Reasoning
RI:小型:用于自动推理的概率网络
  • 批准号:
    0914211
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Probabilistic Networks for Automated Reasoning
用于自动推理的概率网络
  • 批准号:
    0535223
  • 财政年份:
    2005
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probalistic Networks for Automated Reasoning
用于自动推理的概率网络
  • 批准号:
    0097082
  • 财政年份:
    2001
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probabilistic Networks for Automated Reasoning
用于自动推理的概率网络
  • 批准号:
    9812990
  • 财政年份:
    1998
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Probabilistic Networks for Automated Reasoning
用于自动推理的概率网络
  • 批准号:
    9420306
  • 财政年份:
    1995
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Probabilistic Networks for Automated Reasoning
用于自动推理的概率网络
  • 批准号:
    9200918
  • 财政年份:
    1992
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Heuristic Techniques for Improved Problem-Solving Strategies
改进问题解决策略的启发式技术
  • 批准号:
    8815522
  • 财政年份:
    1989
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似海外基金

Bayesian Sparse Dirichlet-Multinomial Models for Discovering Latent Structure in High-Dimensional Compositional Count Data
用于发现高维组合计数数据中潜在结构的贝叶斯稀疏狄利克雷多项模型
  • 批准号:
    2245492
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Proportionality based association metrics applied to count compositional data
基于比例的关联度量应用于计算成分数据
  • 批准号:
    573217-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Modeling Situated Intention during Nondeterministic Pedestrian-Vehicle Interactions through Explainable Compositional Learning of Naturalistic Driving Data
职业:通过自然驾驶数据的可解释组合学习,对非确定性行人-车辆交互过程中的情境意图进行建模
  • 批准号:
    2145565
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Model-based clustering of high dimensional discrete data and compositional data
高维离散数据和组合数据的基于模型的聚类
  • 批准号:
    RGPIN-2021-03812
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Methods for microbiome compositional data
微生物组组成数据的方法
  • 批准号:
    10338342
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Compositional Data Methodology in the Context of Quantitative Fatty Acid Signature Analysis
定量脂肪酸特征分析背景下的成分数据方法
  • 批准号:
    RGPIN-2022-03217
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Discovery Grants Program - Individual
Thermal and Compositional Structure of Antarctica from Probabilistic Joint Inversion of Seismic, Gravity, and Topography Data and Petrological Modelling
根据地震、重力、地形数据和岩石学模型的概率联合反演南极洲的热力和成分结构
  • 批准号:
    2203487
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
AMPS: Compositional Data-Driven Modeling, Prediction and Control for Reconfigurable Renewable Energy Systems
AMPS:可重构可再生能源系统的组合数据驱动建模、预测和控制
  • 批准号:
    2229435
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Methods for microbiome compositional data
微生物组组成数据的方法
  • 批准号:
    10580718
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
Theory and Methods for Tree-Informed High-Dimensional Compositional Data Analysis
树型高维成分数据分析的理论与方法
  • 批准号:
    2113458
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了