CAREER: Self-Assembly of Fusion Proteins to Form Biofunctional Materials
职业:融合蛋白自组装形成生物功能材料
基本信息
- 批准号:1253306
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2019-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ID: MPS/DMR/BMAT(7623) 1253306 PI: Olsen, Bradley ORG: MITTitle: CAREER: Self-Assembly of Fusion Proteins to Form Biofunctional MaterialsINTELLECTUAL MERIT: Enzyme-functionalized polymeric materials have attracted increasing attention for applications in biomedical materials, sensing, biocatalysis, energy conversion, and chemical agent detoxification, where controlling the nanostructure of the functional proteins can enable advances in material performance. Block copolymer self-assembly is an elegant solution to control protein structure on the 5-50 nm length scale, and the folded shapes and specific interactions of the protein blocks lead to rich new phase behavior. This proposal will investigate the potential of fusion proteins to direct the self-assembly of globular proteins in a manner analogous to diblock copolymers. The use of fusion proteins will enable the easy preparation of site-specific conjugates, using genetic engineering to control molecular structure. The thermodynamics of globular-coil protein blends will be explored to understand how the sequence of a coillike protein affects its miscibility with globular proteins, allowing a set of proteins with potential for directing self-assembly to be identified. Fusion proteins will then be cloned from target globular proteins and promising coil protein sequences in order to produce protein block copolymer molecules capable of self-assembly. Processing methods to produce nanostructured gels and plastics from aqueous casting will be developed, and the resulting self-assembled materials will be characterized to identify the type of nanostructures formed. Spectroscopic methods and activity assays will be used to assess protein fold and function within the nanomaterials. Comparison to coarse-grained theories for protein/polymer solutions and protein-polymer conjugate self-assembly will enable the universal thermodynamics of self-assembly for globular-coil protein fusions to be elucidated. The complex challenges of understanding how protein fold and specific interactions affect nanostructuring in soft materials is an emerging obstacle in materials science that must be addressed to further advance knowledge and application of bio-based materials. These fundamental studies of globular protein-coil protein fusion self-assembly will provide both a new method for material preparation and an understanding of the materials science and thermodynamics of these complex systems.BROADER IMPACTS: This proposal will expand the application of protein-based materials by enabling control over self-assembled nanostructure formation using fusion proteins prepared by relatively easy and inexpensive synthesis and purification methods. A diverse team of graduate and undergraduate researchers will perform research on this project, providing valuable training experiences to engineers at several educational levels. This research focus on biologically-based materials will be integrated with efforts to develop novel methods that will impact both undergraduate and high school teaching. A new pedagogy will be developed for teaching the introductory Chemical Engineering course, integrating the study of materials research and product development that reflects the modern scope of the profession. The undergraduate level educational objectives of this proposal transform the teaching of the universally accepted introductory chemical engineering course, impacting education in this discipline worldwide. In collaboration with local high school teachers, teaching materials for a unit on sustainable polymers and biomaterials and demonstrations of polymer materials will also be developed to translate excitement about this research area to secondary school students. A high school pedagogy that integrates sustainable polymer materials research to teach core requirements of state and national science education standards will provide an easily adopted forum for the broad dissemination of this research.
ID:MPS/DMR/BMAT(7623)1253306 PI:奥尔森,布拉德利 ORG:MIT标题:职业:酶功能化聚合物材料在生物医学材料、传感、生物催化、能量转换和化学试剂解毒等方面的应用越来越受到关注,其中控制功能蛋白质的纳米结构可以实现材料性能的进步。 嵌段共聚物自组装是在5-50 nm长度尺度上控制蛋白质结构的一种优雅的解决方案,蛋白质嵌段的折叠形状和特异性相互作用导致丰富的新相行为。 该提案将研究融合蛋白以类似于二嵌段共聚物的方式指导球状蛋白自组装的潜力。 融合蛋白的使用将使得能够容易地制备位点特异性缀合物,使用基因工程来控制分子结构。 球状螺旋蛋白质共混物的热力学将被探索,以了解螺旋状蛋白质的序列如何影响其与球状蛋白质的相容性,从而确定一组具有指导自组装潜力的蛋白质。 融合蛋白然后将从靶球状蛋白和有希望的卷曲蛋白序列克隆,以产生能够自组装的蛋白质嵌段共聚物分子。 将开发从水性铸造生产纳米结构凝胶和塑料的加工方法,并将对所得自组装材料进行表征以确定形成的纳米结构的类型。 光谱方法和活性测定将用于评估纳米材料中的蛋白质折叠和功能。 比较粗粒度的蛋白质/聚合物溶液和蛋白质-聚合物共轭自组装的理论将使球螺旋蛋白质融合的自组装的通用热力学得到阐明。 理解蛋白质折叠和特定相互作用如何影响软材料中的纳米结构化的复杂挑战是材料科学中的一个新障碍,必须解决这些问题以进一步推进生物基材料的知识和应用。 这些球状蛋白质螺旋蛋白质融合自组装的基础研究将提供一种新的方法,材料制备和材料科学和热力学的理解,这些复杂的system.BroADER重要:这一建议将扩大蛋白质为基础的材料的应用,使控制自组装纳米结构的形成使用融合蛋白制备相对容易和廉价的合成和纯化方法。 一个由研究生和本科生研究人员组成的多元化团队将对该项目进行研究,为不同教育水平的工程师提供宝贵的培训经验。 这项研究重点关注生物基材料,将与开发新方法的努力相结合,这些方法将影响本科和高中教学。 将开发一种新的教学方法来教授化学工程入门课程,将材料研究和产品开发的研究结合起来,反映了该专业的现代范围。 该提案的本科教育目标改变了普遍接受的化学工程入门课程的教学,影响了全世界这一学科的教育。 与当地高中教师合作,还将开发可持续聚合物和生物材料单元的教材以及聚合物材料的演示,以将对这一研究领域的兴奋转化为中学生。 将可持续聚合物材料研究与州和国家科学教育标准的核心要求相结合的高中教学法将为这项研究的广泛传播提供一个易于采用的论坛。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bradley Olsen其他文献
EXPANSE: A time-of-flight EXPanded Angle Neutron Spin Echo spectrometer at the Second Target Station of the Spallation Neutron Source.
EXPANSE:散裂中子源第二目标站的飞行时间扩展角中子自旋回波光谱仪。
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:1.6
- 作者:
Changwoo Do;R. Ashkar;Cristina Boone;Wei;G. Ehlers;P. Falus;A. Faraone;J. Gardner;V. Graves;Thomas Huegle;Reika Katsumata;Darian Kent;Jiao Y. Y. Lin;Bill McHargue;Bradley Olsen;Yangyang Wang;Danielle Wilson;Y. Z - 通讯作者:
Y. Z
Bradley Olsen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bradley Olsen', 18)}}的其他基金
NSF Convergence Accelerator Track D: A Community Resource for Innovation in Polymer Technology (CRIPT)
NSF 融合加速器轨道 D:聚合物技术创新社区资源 (CRIPT)
- 批准号:
2134795 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Cooperative Agreement
RAPID: Collaborative Research: Augmenting Mucosal Gels with Associating Brush Polymers to Prevent COVID-19 Infection
RAPID:合作研究:用缔合刷状聚合物增强粘膜凝胶以预防 COVID-19 感染
- 批准号:
2029751 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
NSF Convergence Accelerator Track D: A Community Resource for Innovation in Polymer Materials
NSF 融合加速器轨道 D:高分子材料创新的社区资源
- 批准号:
2040636 - 财政年份:2020
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Dynamics of Associative Polymers Revealed by Self-Diffusion
自扩散揭示缔合聚合物的动力学
- 批准号:
1709315 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Engineering a new family of consensus repeat proteins based on nucleoporins
基于核孔蛋白设计一个新的共有重复蛋白家族
- 批准号:
1705923 - 财政年份:2017
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Self-shrinkers的刚性及相关问题
- 批准号:
- 批准年份:2019
- 资助金额:10.0 万元
- 项目类别:省市级项目
基于Self-peptide和Fe5C2构建的高敏感MR分子探针对肿瘤血管的MR靶向成像研究
- 批准号:81501521
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
平均曲率流中非紧Self-shrinkers的结构
- 批准号:11301190
- 批准年份:2013
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
2维伪欧氏空间下平均曲率流中Self-shrinker问题的研究
- 批准号:11126152
- 批准年份:2011
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
晶态桥联聚倍半硅氧烷的自导向组装(self-directed assembly)及其发光性能
- 批准号:21171046
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
成束蛋白Fascin1在肺癌"self-seeding"过程中的作用及机制研究
- 批准号:81001041
- 批准年份:2010
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
工业用腈水合酶全新蛋白质翻译后调节体系self-subunit swapping的研究
- 批准号:31070711
- 批准年份:2010
- 资助金额:35.0 万元
- 项目类别:面上项目
相似海外基金
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2411677 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
- 批准号:
2240000 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CAREER: Ring-Opening Polymerization-Induced Crystallization-Driven Self-Assembly
职业:开环聚合诱导结晶驱动的自组装
- 批准号:
2238834 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Programmable control of biomolecular condensate self-assembly
职业:生物分子凝聚体自组装的可编程控制
- 批准号:
2143670 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Stimuli-Responsive Self-Assembly of Supramolecular Block Copolymers: Hierarchical Structures and Kinetic Pathways
职业:超分子嵌段共聚物的刺激响应自组装:层次结构和动力学途径
- 批准号:
2144997 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Decoding Crystal Growth and Phase Transformations of Complex Structures With Minimalist Self-Assembly Models
职业:用极简自组装模型解码复杂结构的晶体生长和相变
- 批准号:
2144094 - 财政年份:2022
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Functional Fouling of Surfaces by Interfacial Silk Fibroin Self-Assembly
职业:通过界面丝素蛋白自组装实现表面功能性污垢
- 批准号:
2045510 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Solid-state molecular motion, reversible covalent-bond formation, and self-assembly for controlling thermal expansion behavior
职业:固态分子运动、可逆共价键形成以及用于控制热膨胀行为的自组装
- 批准号:
2045506 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Engineering Self-Assembly of Recombinant Fusion Proteins for Bottom-Up Construction of Protein-Powered Synthetic Protocells
职业:重组融合蛋白的工程自组装,用于自下而上构建蛋白质驱动的合成原始细胞
- 批准号:
2045313 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: Self-Assembly and Structure in Organic Mixtures
职业:有机混合物中的自组装和结构
- 批准号:
1847340 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Standard Grant