CAREER: An Information-Theoretic Approach to Communication-Constrained Statistical Learning
职业:通信受限统计学习的信息论方法
基本信息
- 批准号:1254041
- 负责人:
- 金额:$ 51.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-02-01 至 2022-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project aims to develop an information-theoretic approach to communication-constrained statistical learning problems involving multiple learning agents located at the nodes of a large network. This approach will build on the recently introduced coordination paradigm within network information theory, which looks at multiterminal problems in terms of optimal use of communication resources in order to establish some desired statistical correlations between the nodes of a network. The main theoretical goal is to explicitly identify the effect of bandwidth limitations, losses, delays, and lack of central coordination on the performance of statistical learning algorithms over networks. The project will systematically explore the fundamental limits of learning in multiterminal settings and design efficiently implementable and robust coding/decoding schemes. The theory developed under this project will be a novel synthesis of probabilistic techniques from machine learning (such as empirical process theory) and of multiterminal information theory (such as distributed lossy source coding).As a broader impact, this project will provide key enabling technologies for large-scale, distributed applications of machine learning in such domains as smart grids, health-care informatics, transportation networks, and cybersecurity. Statistical machine learning is emerging as a dominant paradigm for making accurate predictions on the basis of empirical observations in the presence of significant model uncertainty. Most of the research activity in this field, however, has taken place in isolation from the realities of complex networks and all the attendant limitations on information transmission and processing: it is frequently assumed that the data needed for learning are available instantly, with arbitrary precision, and at a single location. However, given the fact that most data fed to machine learning algorithms are increasingly generated, exchanged, stored and processed over large-scale networks, there is a pressing need to dispense with this assumption and thus take network effects into consideration. The theory and the algorithms developed as part of this project will ensure that the relevant data are delivered over the network to the right decision-makers, while securing accurate decisions made on the basis of the received information. The research component of the project is tightly integrated with an education and outreach plan, including development and teaching of new courses on machine learning aimed specifically at engineering students.
该项目旨在开发一种信息理论方法,以涉及涉及大型网络节点的多个学习代理的统计学习问题。这种方法将基于网络信息理论中最近引入的协调范式,该范式从最佳使用通信资源来研究多端问题,以建立网络节点之间的一些理想的统计相关性。主要的理论目标是明确确定带宽限制,损失,延迟和中央协调对网络统计学习算法的性能的影响。该项目将系统地探索多端设置中学习的基本局限性,并有效地实施和可靠的编码/解码方案。该项目下开发的理论将是机器学习(例如经验过程理论)和多播信息理论(例如分布式有损耗的源编码)的新型概念。作为更广泛的影响,该项目将为大规模的启用技术提供重要的启用技术,用于大规模的,诸如智能网络的智能网络,医疗服务,cy cy and cy and chetersick and Cyersick and Cyersick and Cyersicksick and Cyersicksick and Cyersicksicksick and Cyersicksicksick and cy cy,,cy cy and cy and cy sytsick and cy sytsick and cy and cy,,cy sy。统计机器学习正在作为主要模型不确定性的经验观察中进行准确预测的主要范式。但是,该领域的大多数研究活动都是与复杂网络的现实以及所有随之而来的有关信息传输和处理的限制是孤立的:经常假定,学习所需的数据可以立即获得,具有任意精度,并且在一个单个位置。但是,鉴于大多数馈送到机器学习算法的数据越来越多地生成,交换,存储和处理在大规模网络上,因此有迫切需要消除此假设,从而考虑到网络效应。作为该项目的一部分而开发的理论和算法将确保通过网络将相关数据传递给正确的决策者,同时确保基于收到的信息确保准确的决策。该项目的研究组成部分与教育和外展计划紧密整合,包括针对工程专业学生的机器学习的新课程的开发和教学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Raginsky其他文献
On the information capacity of Gaussian channels under small peak power constraints
- DOI:
10.1109/allerton.2008.4797569 - 发表时间:
2008-09 - 期刊:
- 影响因子:0
- 作者:
Maxim Raginsky - 通讯作者:
Maxim Raginsky
A variational approach to sampling in diffusion processes
扩散过程中的变分采样方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Maxim Raginsky - 通讯作者:
Maxim Raginsky
Maxim Raginsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Raginsky', 18)}}的其他基金
CIF: Small: Towards a Control Framework for Neural Generative Modeling
CIF:小:走向神经生成建模的控制框架
- 批准号:
2348624 - 财政年份:2024
- 资助金额:
$ 51.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Analysis and Geometry of Neural Dynamical Systems
合作研究:CIF:媒介:神经动力系统的分析和几何
- 批准号:
2106358 - 财政年份:2021
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
HDR TRIPODS: Illinois Institute for Data Science and Dynamical Systems (iDS2)
HDR TRIPODS:伊利诺伊州数据科学与动力系统研究所 (iDS2)
- 批准号:
1934986 - 财政年份:2019
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
I/UCRC: Phase I: Center for Advanced Electronics through Machine Learning (CAEML)
I/UCRC:第一阶段:机器学习先进电子学中心 (CAEML)
- 批准号:
1624811 - 财政年份:2016
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
CIF: Small: Learning Signal Representations for Multiple Inference Tasks
CIF:小:学习多个推理任务的信号表示
- 批准号:
1527388 - 财政年份:2015
- 资助金额:
$ 51.84万 - 项目类别:
Standard Grant
CIF: Medium:Collaborative Research: Nonasymptotic Analysis of Feature-Rich Decision Problems with Applications to Computer Vision
CIF:媒介:协作研究:特征丰富的决策问题的非渐近分析及其在计算机视觉中的应用
- 批准号:
1302438 - 财政年份:2013
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
- 批准号:
1261120 - 财政年份:2012
- 资助金额:
$ 51.84万 - 项目类别:
Standard Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
- 批准号:
1017564 - 财政年份:2010
- 资助金额:
$ 51.84万 - 项目类别:
Standard Grant
相似国自然基金
基于证据理论的非完备信息度量及融合方法研究
- 批准号:62301439
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
复杂多重先验信息的试验设计理论与应用研究
- 批准号:12361053
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
钛合金SLM成形热致微失稳体多源信息驱动无损感知理论与方法研究
- 批准号:52305594
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于新一代信息技术的复杂油气储层地震勘探理论和方法
- 批准号:42330801
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
抗信息交互不确定性的高实时无人机集群协同理论与方法研究
- 批准号:62371086
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
相似海外基金
CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
- 批准号:
2340006 - 财政年份:2024
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
- 批准号:
2339686 - 财政年份:2024
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
- 批准号:
2239375 - 财政年份:2023
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
- 批准号:
2140775 - 财政年份:2021
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant
CAREER: Information-Theoretic and Statistical Foundations of Generative Models
职业:生成模型的信息理论和统计基础
- 批准号:
1942230 - 财政年份:2020
- 资助金额:
$ 51.84万 - 项目类别:
Continuing Grant