CAREER: An Information-Theoretic Approach to Communication-Constrained Statistical Learning

职业:通信受限统计学习的信息论方法

基本信息

  • 批准号:
    1254041
  • 负责人:
  • 金额:
    $ 51.84万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-02-01 至 2022-01-31
  • 项目状态:
    已结题

项目摘要

This project aims to develop an information-theoretic approach to communication-constrained statistical learning problems involving multiple learning agents located at the nodes of a large network. This approach will build on the recently introduced coordination paradigm within network information theory, which looks at multiterminal problems in terms of optimal use of communication resources in order to establish some desired statistical correlations between the nodes of a network. The main theoretical goal is to explicitly identify the effect of bandwidth limitations, losses, delays, and lack of central coordination on the performance of statistical learning algorithms over networks. The project will systematically explore the fundamental limits of learning in multiterminal settings and design efficiently implementable and robust coding/decoding schemes. The theory developed under this project will be a novel synthesis of probabilistic techniques from machine learning (such as empirical process theory) and of multiterminal information theory (such as distributed lossy source coding).As a broader impact, this project will provide key enabling technologies for large-scale, distributed applications of machine learning in such domains as smart grids, health-care informatics, transportation networks, and cybersecurity. Statistical machine learning is emerging as a dominant paradigm for making accurate predictions on the basis of empirical observations in the presence of significant model uncertainty. Most of the research activity in this field, however, has taken place in isolation from the realities of complex networks and all the attendant limitations on information transmission and processing: it is frequently assumed that the data needed for learning are available instantly, with arbitrary precision, and at a single location. However, given the fact that most data fed to machine learning algorithms are increasingly generated, exchanged, stored and processed over large-scale networks, there is a pressing need to dispense with this assumption and thus take network effects into consideration. The theory and the algorithms developed as part of this project will ensure that the relevant data are delivered over the network to the right decision-makers, while securing accurate decisions made on the basis of the received information. The research component of the project is tightly integrated with an education and outreach plan, including development and teaching of new courses on machine learning aimed specifically at engineering students.
该项目旨在开发一种信息理论方法来解决通信受限的统计学习问题,该问题涉及位于大型网络节点处的多个学习代理。这种方法将建立在最近引入的网络信息理论,它着眼于多终端问题的通信资源的最佳利用,以建立一些所需的网络节点之间的统计相关性的协调范式。主要的理论目标是明确识别带宽限制、损失、延迟和缺乏中央协调对网络上统计学习算法性能的影响。该项目将系统地探索多终端环境中学习的基本限制,并设计可有效实施且强大的编码/解码方案。在这个项目下开发的理论将是一种新的机器学习概率技术的综合(如经验过程理论)和多端信息理论(如分布式有损源编码)。作为一个更广泛的影响,该项目将提供关键的使能技术,用于智能电网,医疗保健信息学,交通网络,和网络安全。统计机器学习正在成为在存在显著模型不确定性的情况下基于经验观察进行准确预测的主导范式。然而,这一领域的大多数研究活动都是在与复杂网络的现实以及随之而来的信息传输和处理方面的所有限制相隔离的情况下进行的:人们经常假设,学习所需的数据可以立即获得,具有任意的精度,并且在一个位置。然而,鉴于大多数输入机器学习算法的数据越来越多地在大规模网络上生成、交换、存储和处理,迫切需要放弃这种假设,从而考虑网络效应。作为该项目的一部分开发的理论和算法将确保相关数据通过网络传递给正确的决策者,同时确保根据收到的信息做出准确的决策。该项目的研究部分与教育和推广计划紧密结合,包括专门针对工程专业学生的机器学习新课程的开发和教学。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Maxim Raginsky其他文献

On the information capacity of Gaussian channels under small peak power constraints
A variational approach to sampling in diffusion processes
扩散过程中的变分采样方法
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maxim Raginsky
  • 通讯作者:
    Maxim Raginsky
Biological Autonomy
生物自主性
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maxim Raginsky
  • 通讯作者:
    Maxim Raginsky

Maxim Raginsky的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Maxim Raginsky', 18)}}的其他基金

CIF: Small: Towards a Control Framework for Neural Generative Modeling
CIF:小:走向神经生成建模的控制框架
  • 批准号:
    2348624
  • 财政年份:
    2024
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Analysis and Geometry of Neural Dynamical Systems
合作研究:CIF:媒介:神经动力系统的分析和几何
  • 批准号:
    2106358
  • 财政年份:
    2021
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
HDR TRIPODS: Illinois Institute for Data Science and Dynamical Systems (iDS2)
HDR TRIPODS:伊利诺伊州数据科学与动力系统研究所 (iDS2)
  • 批准号:
    1934986
  • 财政年份:
    2019
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
I/UCRC: Phase I: Center for Advanced Electronics through Machine Learning (CAEML)
I/UCRC:第一阶段:机器学习先进电子学中心 (CAEML)
  • 批准号:
    1624811
  • 财政年份:
    2016
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CIF: Small: Learning Signal Representations for Multiple Inference Tasks
CIF:小:学习多个推理任务的信号表示
  • 批准号:
    1527388
  • 财政年份:
    2015
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Standard Grant
CIF: Medium:Collaborative Research: Nonasymptotic Analysis of Feature-Rich Decision Problems with Applications to Computer Vision
CIF:媒介:协作研究:特征丰富的决策问题的非渐近分析及其在计算机视觉中的应用
  • 批准号:
    1302438
  • 财政年份:
    2013
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
  • 批准号:
    1261120
  • 财政年份:
    2012
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Standard Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
  • 批准号:
    1017564
  • 财政年份:
    2010
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Standard Grant

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
Exploring the Intrinsic Mechanisms of CEO Turnover and Market Reaction: An Explanation Based on Information Asymmetry
  • 批准号:
    W2433169
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国学者研究基金项目
SCIENCE CHINA Information Sciences
  • 批准号:
    61224002
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

CAREER: Information-Theoretic Measures for Fairness and Explainability in High-Stakes Applications
职业:高风险应用中公平性和可解释性的信息论测量
  • 批准号:
    2340006
  • 财政年份:
    2024
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Towards Trustworthy Machine Learning via Learning Trustworthy Representations: An Information-Theoretic Framework
职业:通过学习可信表示实现可信机器学习:信息理论框架
  • 批准号:
    2339686
  • 财政年份:
    2024
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Optimism in Causal Reasoning via Information-theoretic Methods
职业:通过信息论方法进行因果推理的乐观主义
  • 批准号:
    2239375
  • 财政年份:
    2023
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Approach to Turbulence: Causality, Modeling & Control
职业:湍流的信息理论方法:因果关系、建模
  • 批准号:
    2140775
  • 财政年份:
    2021
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic and Statistical Foundations of Generative Models
职业:生成模型的信息理论和统计基础
  • 批准号:
    1942230
  • 财政年份:
    2020
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Information Theoretic Methods in Data Structures
职业:数据结构中的信息论方法
  • 批准号:
    1844887
  • 财政年份:
    2019
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Foundations of Fairness in Machine Learning
职业:机器学习公平性的信息理论基础
  • 批准号:
    1845852
  • 财政年份:
    2019
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Communication- Efficient Distributed Computation: Information- Theoretic Foundations and Algorithms
职业:通信高效分布式计算:信息理论基础和算法
  • 批准号:
    1651492
  • 财政年份:
    2017
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: Information-Theoretic Methods for RNA Analytics
职业:RNA 分析的信息理论方法
  • 批准号:
    1651236
  • 财政年份:
    2017
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
CAREER: An Information Theoretic Perspective of Consistent Distributed Storage Systems
职业:一致分布式存储系统的信息论视角
  • 批准号:
    1553248
  • 财政年份:
    2016
  • 资助金额:
    $ 51.84万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了