CIF: Small: Learning Signal Representations for Multiple Inference Tasks
CIF:小:学习多个推理任务的信号表示
基本信息
- 批准号:1527388
- 负责人:
- 金额:$ 50万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-08-01 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Rapid advances in high-performance computing and widespread availability of massive datasets are bringing about a paradigm shift in the theory and practice of signal representations, geared towards inference and learning. A signal representation is a compressed summary that only retains those features of the signal that are salient for a class of inference tasks. This project provides a comprehensive theoretical and algorithmic framework for signal representations, which is sufficiently broad to cover both the traditional types of signal representations, such as vector quantization and sparse codes, and the more modern types, inspired by recent advances in machine learning and signal processing for Big Data. Under this framework, the statistical performance and the computational complexity of signal representations are addressed in a unified manner by imposing structural constraints on the encoding map, the decoding map, and the model space of the representation, while simultaneously tailoring these objects to the class of tasks of interest. This unification leads to new theoretical and algorithmic insights into highly structured internal representations that are a key factor in recent spectacular success of deep neural networks on challenging tasks in visual, audio, and speech analytics.
高性能计算的快速发展和海量数据集的广泛使用正在导致信号表示的理论和实践的范式转变,面向推理和学习。信号表示是一种压缩的摘要,它只保留信号的那些对于一类推理任务来说是显著的特征。该项目为信号表示提供了一个全面的理论和算法框架,该框架足够广泛,既涵盖了传统类型的信号表示,如矢量量化和稀疏码,也涵盖了受大数据机器学习和信号处理最新进展启发的更现代类型。在该框架下,通过对编码映射、解码映射和表示的模型空间施加结构约束,同时将这些对象定制为感兴趣的任务类别,以统一的方式解决信号表示的统计性能和计算复杂性。这种统一导致了对高度结构化的内部表示的新的理论和算法见解,这些内部表示是深度神经网络最近在视觉、音频和语音分析方面的挑战性任务取得惊人成功的关键因素。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Maxim Raginsky其他文献
On the information capacity of Gaussian channels under small peak power constraints
- DOI:
10.1109/allerton.2008.4797569 - 发表时间:
2008-09 - 期刊:
- 影响因子:0
- 作者:
Maxim Raginsky - 通讯作者:
Maxim Raginsky
A variational approach to sampling in diffusion processes
扩散过程中的变分采样方法
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Maxim Raginsky - 通讯作者:
Maxim Raginsky
Maxim Raginsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Maxim Raginsky', 18)}}的其他基金
CIF: Small: Towards a Control Framework for Neural Generative Modeling
CIF:小:走向神经生成建模的控制框架
- 批准号:
2348624 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Analysis and Geometry of Neural Dynamical Systems
合作研究:CIF:媒介:神经动力系统的分析和几何
- 批准号:
2106358 - 财政年份:2021
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
HDR TRIPODS: Illinois Institute for Data Science and Dynamical Systems (iDS2)
HDR TRIPODS:伊利诺伊州数据科学与动力系统研究所 (iDS2)
- 批准号:
1934986 - 财政年份:2019
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
I/UCRC: Phase I: Center for Advanced Electronics through Machine Learning (CAEML)
I/UCRC:第一阶段:机器学习先进电子学中心 (CAEML)
- 批准号:
1624811 - 财政年份:2016
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CAREER: An Information-Theoretic Approach to Communication-Constrained Statistical Learning
职业:通信受限统计学习的信息论方法
- 批准号:
1254041 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Medium:Collaborative Research: Nonasymptotic Analysis of Feature-Rich Decision Problems with Applications to Computer Vision
CIF:媒介:协作研究:特征丰富的决策问题的非渐近分析及其在计算机视觉中的应用
- 批准号:
1302438 - 财政年份:2013
- 资助金额:
$ 50万 - 项目类别:
Continuing Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
- 批准号:
1261120 - 财政年份:2012
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Distributed Online Decision-Making in Large-Scale Networks
CIF:小型:大型网络中的分布式在线决策
- 批准号:
1017564 - 财政年份:2010
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
相似国自然基金
昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
- 批准号:32000033
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
- 批准号:31972324
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
- 批准号:81900988
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
- 批准号:31870821
- 批准年份:2018
- 资助金额:56.0 万元
- 项目类别:面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
- 批准号:31802058
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
- 批准号:31772128
- 批准年份:2017
- 资助金额:60.0 万元
- 项目类别:面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
- 批准号:81704176
- 批准年份:2017
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
- 批准号:91640114
- 批准年份:2016
- 资助金额:85.0 万元
- 项目类别:重大研究计划
相似海外基金
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Learning Low-Dimensional Representations with Heteroscedastic Data Sources
CIF:小:使用异方差数据源学习低维表示
- 批准号:
2331590 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Signal Processing and Learning for NOMA Millimeter-Wave Massive MIMO Systems
CIF:小型:NOMA 毫米波大规模 MIMO 系统的信号处理和学习
- 批准号:
2413622 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Efficient and Secure Federated Structure Learning from Bad Data
CIF:小型:高效、安全的联邦结构从不良数据中学习
- 批准号:
2341359 - 财政年份:2024
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Designing Plotkin Transform Codes via Machine Learning
协作研究:CIF:小型:通过机器学习设计 Plotkin 转换代码
- 批准号:
2312753 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: An Algebraic, Convex, and Scalable Framework for Kernel Learning with Activation Functions
CIF:小型:具有激活函数的核学习的代数、凸性和可扩展框架
- 批准号:
2323532 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Theory for Learning Lossless and Lossy Coding
协作研究:CIF:小型:学习无损和有损编码的理论
- 批准号:
2324396 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: SMALL: Theoretical Foundations of Partially Observable Reinforcement Learning: Minimax Sample Complexity and Provably Efficient Algorithms
CIF:SMALL:部分可观察强化学习的理论基础:最小最大样本复杂性和可证明有效的算法
- 批准号:
2315725 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant
CIF: Small: Inverse Reinforcement Learning for Cognitive Sensing
CIF:小:认知感知的逆强化学习
- 批准号:
2312198 - 财政年份:2023
- 资助金额:
$ 50万 - 项目类别:
Standard Grant