CAREER: Integrated CO2 Capture and Catalytic Conversion to Solar Fuels Using Hybrid Multifunctional Materials
职业:使用混合多功能材料集成二氧化碳捕获和催化转化为太阳能燃料
基本信息
- 批准号:1254709
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2015-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
ABSTRACTTechnical/Scientific MeritPhotocatalytic reduction of carbon dioxide (CO2) with water by sunlight is a highly desirable process to produce solar fuels such as methane and methanol. This technology not only reduces greenhouse gases (e.g., CO2) but also provides pathways to sustainable energy. However, CO2 activation and conversion is very challenging because of its stable thermodynamic properties. Despite increasing efforts in this area in recent years, the efficiency of photocatalytic CO2 reduction remains low. Some investigators believe important problems have yet to receive adequate exploration, including the nature of the photocatalyst surface active sites, its capacity for CO2 adsorption, the kinetics of reaction product desorption, and the long-term stability of the catalyst. In this NSF Faculty Early Career Development (CAREER) Program Award, Prof. Ying Li of the University of Wisconsin-Milwaukee will address a number of these issues. Li will explore a new concept of integrated CO2 capture and catalytic conversion (IC4) to produce solar fuels using novel multifunctional materials, with the aim to achieve significantly improved, stable CO2 conversion efficiency. The proposed multifunctional materials will exploit interacting adsorbent/catalyst components in the form of mixed metal oxides, layered double hydroxides (LDHs), and their hybrids, which are metal oxide nanoparticles embedded on reconstructed LDHs. Different morphologies and nanostructures of the adsorbent/catalyst components will be investigated to maximize the synergy between the two components/functions. Another unique idea in the proposed research is to perform the photocatalytic CO2 reaction at elevated temperatures in the range of 100 to 200 °C; whereas, conventional photocatalytic reactions are conducted at room or near-room temperatures. At these higher temperatures, the desorption of reaction intermediates and products from the catalyst surface will be enhanced, while the adsorbent component of the hybrid material will function to ensure CO2 adsorption. This slightly elevated temperature can be achieved by utilizing industrial waste heat or the infrared portion of sunlight in large-scale applications, and thus a higher overall solar energy conversion efficiency is expected. This CAREER project will also advance fundamental understanding of the CO2 photoreduction mechanism. CO2 adsorption/desorption and the measured photocatalytic conversion efficiency will be correlated with comprehensive material characterization, through advanced spectroscopic methods including in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) and x-ray absorption spectroscopy (XAS). These combined approaches will be powerful tools to investigate changes in material properties during photoreaction, interactions of adsorbates on the surface, fate of reaction intermediates, charge transfer pathways, and factors that affect catalyst activity and stability. Broader ImpactThe results of this proposed research in converting greenhouse gases like CO2 to fuels will have significant impact on the development of sustainable energy technology. The current research on CO2 capture and CO2 conversion/utilization are separately investigated in the scientific community. The proposed concept of integrated CO2 capture and catalytic conversion at slightly elevated temperatures using hybrid adsorbent/catalyst materials offers a new route to solve this very challenging problem in a more integrated, efficient way. The new material design and fundamental understanding in catalyst stability in this research by Prof. Li will also shed light on other photocatalytic systems such as solar hydrogen production from water splitting.As expected for CAREER projects, the proposed research will be integrated into teaching and curriculum development. Graduate students will be trained in this interdisciplinary research; undergraduate and high school students, particularly those in underrepresented groups, will be recruited to participate in the research project. Outreach programs are planned in collaboration with Milwaukee Public Schools and non-profit education organizations in Milwaukee urban areas such as the Urban Ecology Center, to assist teachers to build course materials related to solar energy and nanotechnology, thereby increasing the students? awareness in global climate change while promoting interests in the STEM fields.
技术/科学价值太阳光催化水还原二氧化碳(CO2)是生产甲烷和甲醇等太阳能燃料的非常理想的过程。这项技术不仅减少了温室气体(如二氧化碳),还提供了可持续能源的途径。然而,由于CO2具有稳定的热力学性质,其活化和转化是非常具有挑战性的。尽管近年来在这一领域的努力越来越多,但光催化还原二氧化碳的效率仍然很低。一些研究人员认为,一些重要的问题还没有得到足够的探索,包括光催化剂表面活性中心的性质,它对二氧化碳的吸附能力,反应产物解吸的动力学,以及催化剂的长期稳定性。在NSF教师早期职业发展(Career)项目奖中,威斯康星大学密尔沃基分校的李颖教授将讨论这些问题。李将探索集成二氧化碳捕获和催化转化(IC4)的新概念,使用新型多功能材料生产太阳能燃料,目的是实现显著提高、稳定的二氧化碳转化效率。拟议的多功能材料将利用以混合金属氧化物、层状双氢氧化物(LDHs)及其混合体的形式存在的相互作用的吸附剂/催化剂组件,即嵌入在重建的LDHs上的金属氧化物纳米颗粒。将研究不同形态和纳米结构的吸附剂/催化剂组件,以最大限度地发挥两种组件/功能之间的协同作用。拟议研究中的另一个独特想法是在100至200摄氏度的高温下进行光催化二氧化碳反应;而传统的光催化反应是在室温或近室温下进行的。在这些较高的温度下,反应中间体和产物从催化剂表面的脱附将得到加强,而杂化材料的吸附成分将发挥作用,以确保二氧化碳的吸附。这种略微升高的温度可以通过在大规模应用中利用工业废热或太阳光的红外部分来实现,因此预计会有更高的总体太阳能转换效率。这一职业项目还将促进对二氧化碳光还原机理的基本理解。通过包括原位漫反射红外傅里叶变换光谱(DRIFTS)和X射线吸收光谱(XAS)在内的先进光谱方法,将二氧化碳的吸附/解吸和测量的光催化转化效率与材料的综合表征相关联。这些结合的方法将是研究光反应过程中材料性质的变化、表面吸附物质的相互作用、反应中间产物的去向、电荷转移途径以及影响催化剂活性和稳定性的因素的有力工具。更广泛的影响这项拟议的将二氧化碳等温室气体转化为燃料的研究结果将对可持续能源技术的发展产生重大影响。目前关于二氧化碳捕获和二氧化碳转化/利用的研究在科学界是分开进行的。提出的利用混合吸附/催化剂材料在略高的温度下集成二氧化碳捕获和催化转化的概念为以更综合、更有效的方式解决这一非常具有挑战性的问题提供了一条新的途径。李教授在这项研究中的新材料设计和对催化剂稳定性的基本理解也将对其他光催化系统,如太阳能裂解制氢系统提供启发。正如职业项目所预期的那样,拟议的研究将被整合到教学和课程开发中。研究生将接受这种跨学科研究的培训;本科生和高中生,特别是那些代表性较低的群体的学生,将被招募参加研究项目。计划与密尔沃基公立学校和密尔沃基市区的非营利性教育组织(如城市生态中心)合作开展推广计划,以帮助教师构建与太阳能和纳米技术相关的课程材料,从而增加学生?提高对全球气候变化的认识,同时促进对STEM领域的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ying Li其他文献
Dynamic changes of HVR1 quasispecies in chronic hepatitis C after IFN therapy
慢性丙型肝炎IFN治疗后HVR1准种的动态变化
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:0
- 作者:
Lin Zhang;G. Zhao;Ying Li;Li - 通讯作者:
Li
Facile fabrication of bubbles-enhanced flexible bioaerogels for efficient and recyclable oil adsorption
轻松制造气泡增强型柔性生物气凝胶,实现高效且可回收的油吸附
- DOI:
10.1016/j.cej.2020.126240 - 发表时间:
2020-12 - 期刊:
- 影响因子:15.1
- 作者:
Qiaozhi Wang;Yan Qin;Chunlong Xue;Haoran Yu;Ying Li - 通讯作者:
Ying Li
Compression behavior of the graded metallic auxetic reentrant honeycomb: Experiment and finite element analysis
分级金属拉胀凹入蜂窝的压缩行为:实验和有限元分析
- DOI:
10.1016/j.msea.2019.04.116 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Dengbao Xiao;Zhichao Dong;Ying Li;Wenwang Wu;Daining Fang - 通讯作者:
Daining Fang
Effects of Event-Related Centrality on Concept Accessibility
事件相关中心性对概念可及性的影响
- DOI:
10.1080/01638530701226204 - 发表时间:
2007 - 期刊:
- 影响因子:2.2
- 作者:
L. Mo;Hongmin Chen;Ying Li;Zhe Chen;Xianyou He - 通讯作者:
Xianyou He
The Efficacy and Neural Correlates of ERP-based Therapy for OCD & TS: A Systematic Review and Meta-Analysis.
基于 ERP 的强迫症治疗的疗效和神经相关性
- DOI:
10.37766/inplasy2021.12.0112 - 发表时间:
2021 - 期刊:
- 影响因子:1.8
- 作者:
Junjuan Yan;Li;Mengyu Wang;Yonghua Cui;Ying Li - 通讯作者:
Ying Li
Ying Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ying Li', 18)}}的其他基金
CLIMA/Collaborative Research: Discovery of Covalent Adaptable Networks for Sustainable Manufacturing and Recycling of Wind Turbine Blades
CLIMA/合作研究:发现用于风力涡轮机叶片可持续制造和回收的共价适应性网络
- 批准号:
2332276 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2313746 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
PFI-TT: Scalable Manufacturing of Novel Catalysts for Converting CO2 to Valuable Products
PFI-TT:可规模化生产将二氧化碳转化为有价值产品的新型催化剂
- 批准号:
2326072 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Interfacial Self-healing of Nanocomposite Hydrogels
合作研究:纳米复合水凝胶的界面自修复
- 批准号:
2314424 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Multiscale Analysis and Simulation of Biofilm Mechanics
合作研究:生物膜力学的多尺度分析与模拟
- 批准号:
2205007 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Machine Learned Coarse-grained Modeling for Mechanics of Thermoplastic Elastomers
职业:热塑性弹性体力学的机器学习粗粒度建模
- 批准号:
2323108 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2313754 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: Using Anisotropic Surface Coating of Nanoparticles to Tune Their Antimicrobial Activity
合作研究:利用纳米颗粒的各向异性表面涂层来调节其抗菌活性
- 批准号:
2153894 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Unraveling Mechanics of High Strength and Low Stiffness in Polymer Nanocomposites through Integrated Molecular Modeling and Nanomechanical Experiments
通过集成分子建模和纳米力学实验揭示聚合物纳米复合材料的高强度和低刚度力学
- 批准号:
2316200 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CRII: OAC: A Hybrid Finite Element and Molecular Dynamics Simulation Approach for Modeling Nanoparticle Transport in Human Vasculature
CRII:OAC:一种混合有限元和分子动力学模拟方法,用于模拟人体脉管系统中纳米颗粒的传输
- 批准号:
2326802 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
greenwashing behavior in China:Basedon an integrated view of reconfiguration of environmental authority and decoupling logic
- 批准号:
- 批准年份:2024
- 资助金额:万元
- 项目类别:外国学者研究基金项目
焦虑症小鼠模型整合模式(Integrated)
行为和精细行为评价体系的构建
- 批准号:
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
An integrated electrolyser for CO2 conversion from capture media.
用于从捕获介质转化二氧化碳的集成电解槽。
- 批准号:
DE230100637 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
STTR Phase I: Integrated Chemical and Supercritical Carbon Dioxide (CO2) Energy Storage
STTR 第一阶段:综合化学和超临界二氧化碳 (CO2) 储能
- 批准号:
2214063 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
SOIL STABILISATION USING INTEGRATED DESIGN OF LOW CO2 ALTERNATIVE CEMENTITIOUS BINDERS
使用低二氧化碳替代胶凝材料的集成设计来稳定土壤
- 批准号:
10020301 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D
CAREER: Catalytic Membranes for Integrated CO2 Capture and Conversion
职业:用于集成二氧化碳捕获和转化的催化膜
- 批准号:
2144362 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Development of an Integrated CO2 Capture and Electrochemical Conversion System
集成二氧化碳捕获和电化学转换系统的开发
- 批准号:
558964-2021 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Collaborative Research: DMREF: GOALI: Discovering Materials for CO2 Capture in the Presence of Water via Integrated Experiment, Modeling, and Theory
合作研究:DMREF:GOALI:通过综合实验、建模和理论发现有水时捕获二氧化碳的材料
- 批准号:
2119033 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: GOALI: Discovering Materials for CO2 Capture in the Presence of Water via Integrated Experiment, Modeling, and Theory
合作研究:DMREF:GOALI:通过综合实验、建模和理论发现有水时捕获二氧化碳的材料
- 批准号:
2119433 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Development of an Integrated CO2 Capture and Electrochemical Conversion System
集成二氧化碳捕获和电化学转换系统的开发
- 批准号:
558964-2021 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Integrated offshore CO2 reservoir monitoring feasibility study
综合海上二氧化碳储层监测可行性研究
- 批准号:
78699 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Small Business Research Initiative
REACT-FIRST: Reduced Emission Aquaculture & Chicken Trial For Integrated, Responsible and Sustainable Transformation of CO2 into animal feed
反应第一:减少水产养殖排放
- 批准号:
48629 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Collaborative R&D