Collaborative research: Universality phenomena and some hard problems of non-homogeneous Harmonic Analysis

合作研究:非齐次调和分析的普遍性现象和一些难题

基本信息

  • 批准号:
    1301579
  • 负责人:
  • 金额:
    $ 34.75万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-06-01 至 2018-05-31
  • 项目状态:
    已结题

项目摘要

This collaborative mathematics research project by Fedor Nazarov, Serguei Treil and Alexander Volberg is in the area of harmonic analysis. Nazarov, Treil and Volberg will concentrate their efforts on several well-known hard problems in non-homogeneous harmonic analysis, geometric measure theory, and spectral theory. The common theme among majority of the problems is the so-called "universality" phenomenon, i.e. the fact that in many situations the boundedness of one operator (or a small collection of operators) implies that a much wider class of operators is bounded as well. Most of the problems lie in the realm of the non-homogeneous harmonic analysis, where underlying sets and measures are highly irregular. Singular integral operators with respect to singular measures and very irregular sets appear naturally in many problems of analysis. One of the motivations for the one-weight non-homogeneous case was the study of analytic capacity. The more sophisticated two-weight estimates of singular operators appear naturally in spectral theory and in the perturbation theory of self-adjoint operators. These problems are notoriously difficult, but using new techniques recently developed by Nazarov, Treil and Volberg and other researchers, they expect to make fundamental progress in the problems. This collaborative mathematics research project by Nazarov, Treil and Volberg is focused in the field of harmonic analysis, which is known to have fundamental applications to other disciplines, most notably to the analysis of large data sets, to image processing, and to the study of wave propagation. The results and mathematical tools that will be developed through this project could also have a bearing on other areas of mathematics, such as mathematical physics, partial differential equations, probability. The project will provide a good training ground for graduate students as well as for mathematicians at the beginning of their careers. Nazarov, Treil and Volberg anticipate an active involvement of their graduate students and postdocs in the project.
这个由Fedor Nazarov、Serguei Treil和Alexander Volberg合作的数学研究项目是在调和分析领域。纳扎罗夫、特雷尔和沃尔伯格将集中精力研究非齐次调和分析、几何测度论和谱理论中的几个著名的难题。大多数问题的共同主题是所谓的“普遍性”现象,即在许多情况下,一个运算符(或一小部分运算符)的有界性意味着更广泛的运算符类别也是有界的。大多数问题存在于非齐次调和分析领域,其中潜在的集合和度量是高度不规则的。在许多分析问题中,关于奇异测度和非常不规则集的奇异积分算子是自然而然出现的。一个重量不同的案例的动机之一是研究分析能力。更复杂的奇异算子双权估计自然出现在谱理论和自伴算子的扰动理论中。这些问题是出了名的难,但使用纳扎罗夫、特雷尔和沃尔伯格等研究人员最近开发的新技术,他们希望在这些问题上取得根本性进展。这项由Nazarov、Treil和Volberg合作的数学研究项目专注于调和分析领域,众所周知,调和分析在其他学科中具有基础应用,最显著的是在大数据集分析、图像处理和波传播研究方面。通过这个项目开发的结果和数学工具也可能对数学的其他领域产生影响,如数学物理、偏微分方程式、概率论。该项目将为研究生和刚开始职业生涯的数学家提供一个很好的培训基础。纳扎罗夫、特雷尔和沃尔伯格预计,他们的研究生和博士后将积极参与该项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Serguei Treil其他文献

Serguei Treil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Serguei Treil', 18)}}的其他基金

Collaborative Research: Non-homogeneous Harmonic Analysis, Spectral Theory, and Weighted Norm Estimates
合作研究:非齐次谐波分析、谱理论和加权范数估计
  • 批准号:
    2154321
  • 财政年份:
    2022
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Standard Grant
Collaborative research: Weighted Estimates with Matrix Weights and Non-Homogeneous Harmonic Analysis
合作研究:矩阵权重加权估计和非齐次谐波分析
  • 批准号:
    1856719
  • 财政年份:
    2019
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Calderon-Zygmund Operators in Highly Irregular Environments, and Applications
合作研究:高度不规则环境中的 Calderon-Zygmund 算子及其应用
  • 批准号:
    1600139
  • 财政年份:
    2016
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Bellman function, Harmonic Analysis and Operator Theory
合作研究:贝尔曼函数、调和分析和算子理论
  • 批准号:
    0800876
  • 财政年份:
    2008
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
Collaborative research: Non-homogeneous harmonic analysis, two weight estimates and spectral problems.
合作研究:非齐次谐波分析、二次权重估计和谱问题。
  • 批准号:
    0501065
  • 财政年份:
    2005
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Multidimensional and Non-Homogeneous Harmonic Analysis: Bellman Functions, Perturbations of Normal Operators and Two Weight Estimates of Singular Integrals
合作研究:多维非齐次调和分析:贝尔曼函数、正规算子的扰动和奇异积分的两种权重估计
  • 批准号:
    0200584
  • 财政年份:
    2002
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
An Operator Approach to Problems in Analysis and Probability: Matrix Muckenhoupt Weights, Hankel and Toeplitz Operators, Singular Integrals and the Angle between Past and Future
分析和概率问题的算子方法:矩阵 Muckenhoupt 权重、Hankel 和 Toeplitz 算子、奇异积分以及过去与未来之间的角度
  • 批准号:
    9622936
  • 财政年份:
    1996
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: Hankel Operators and Their Applications
数学科学:汉克尔算子及其应用
  • 批准号:
    9304011
  • 财政年份:
    1993
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
HIF-1α调控软骨细胞衰老在骨关节炎进展中的作用及机制研究
  • 批准号:
    82371603
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
TIPE2调控巨噬细胞M2极化改善睑板腺功能障碍的作用机制研究
  • 批准号:
    82371028
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
PRNP调控巨噬细胞M2极化并减弱吞噬功能促进子宫内膜异位症进展的机制研究
  • 批准号:
    82371651
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
脐带间充质干细胞微囊联合低能量冲击波治疗神经损伤性ED的机制研究
  • 批准号:
    82371631
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
超声驱动压电效应激活门控离子通道促眼眶膜内成骨的作用及机制研究
  • 批准号:
    82371103
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目
骨髓ISG+NAMPT+中性粒细胞介导抗磷脂综合征B细胞异常活化的机制研究
  • 批准号:
    82371799
  • 批准年份:
    2023
  • 资助金额:
    47.00 万元
  • 项目类别:
    面上项目
Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
RIPK3蛋白及其RHIM结构域在脓毒症早期炎症反应和脏器损伤中的作用和机制研究
  • 批准号:
    82372167
  • 批准年份:
    2023
  • 资助金额:
    48.00 万元
  • 项目类别:
    面上项目
基于MFSD2A调控血迷路屏障跨细胞囊泡转运机制的噪声性听力损失防治研究
  • 批准号:
    82371144
  • 批准年份:
    2023
  • 资助金额:
    49.00 万元
  • 项目类别:
    面上项目

相似海外基金

Formation of Research Platform on "Transborder Japanese Literature" in Global Scale: In Search of Its Universality as "World Literature"
全球范围内“跨国日本文学”研究平台的形成:探求其作为“世界文学”的普遍性
  • 批准号:
    19H01240
  • 财政年份:
    2019
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Doctoral Dissertation Research: Investigating the Universality of the Subject Requirement through a Language With Overt Correspondents for Postulated Null Subjects
博士论文研究:通过具有假定空主题的公开通讯者的语言来调查主题要求的普遍性
  • 批准号:
    1841673
  • 财政年份:
    2018
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Standard Grant
Universality and locality in Micronesian Englishes: Comparative analyses across Micronesian Englishes and real-time studies of Palauan English over 20 years(Fostering Joint International Research)
密克罗尼西亚英语的普遍性和局部性:密克罗尼西亚英语的比较分析和帕劳英语20年来的实时研究(促进国际联合研究)
  • 批准号:
    16KK0025
  • 财政年份:
    2017
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research)
Research on universality and crossover near quantum critical points in strongly correlated quantum impurity systems
强相关量子杂质体系中量子临界点附近的普适性和交叉研究
  • 批准号:
    15K05181
  • 财政年份:
    2015
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative research: Universality phenomena and several hard problems of non-homogeneous Harmonic Analysis
合作研究:非齐次调和分析的普遍性现象及若干难题
  • 批准号:
    1265623
  • 财政年份:
    2013
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
Collaborative Research: Universality Phenomena and Some Hard Problems of Non-homogeneous Harmonic Analysis
合作研究:非齐次谐波分析的普遍性现象和一些难题
  • 批准号:
    1265549
  • 财政年份:
    2013
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Continuing Grant
Cross-cultural research on the universality of modesty and self-enhancement in 13 countries: With neuro scientific examination included
关于 13 个国家谦虚和自我提升普遍性的跨文化研究:包括神经科学检查
  • 批准号:
    25285177
  • 财政年份:
    2013
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Elucidation of the symptoms of speech disorders from linguistic universality and diversity and Research on therapy
从语言的普遍性和多样性阐明言语障碍的症状及治疗研究
  • 批准号:
    23320083
  • 财政年份:
    2011
  • 资助金额:
    $ 34.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Probing the Universality and Function of Single dsDNA Viral Packaging Motors
探讨单 dsDNA 病毒包装马达的通用性和功能
  • 批准号:
    7758338
  • 财政年份:
    2008
  • 资助金额:
    $ 34.75万
  • 项目类别:
Probing the Universality and Function of Single dsDNA Viral Packaging Motors
探讨单 dsDNA 病毒包装马达的通用性和功能
  • 批准号:
    8115699
  • 财政年份:
    2008
  • 资助金额:
    $ 34.75万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了