Estimates in computational complexity, fluid mechanics, additive combinatorics and analysis

计算复杂性、流体力学、加性组合学和分析的估计

基本信息

  • 批准号:
    1266104
  • 负责人:
  • 金额:
    $ 28.4万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-07-01 至 2016-06-30
  • 项目状态:
    已结题

项目摘要

The methods of what can loosely be described as "hard analysis" can be applied in many areas. These methods involve inequalities, that is the use of estimates rather than exact identities. To obtain these, one might use divide and conquer methods like those which specifically occur in harmonic analysis, such as Calderon-Zygmund lemmas and stopping times. One might use transform methods, especially the Fourier transform to determine the role of frequency in the problem. Often most important, is the role of modeling the problem, which in mathematics means finding simple model problems exhibiting the difficulties of the original problem. In this proposal, we plan to use these methods of hard analysis to work on a number of problems of interest in various areas.We plan to look for lower bounds in a certain kind of complexity problem by analyzing the complexity of bipartite graphs which are close to extremal for the property of having no complete two-by-two subgraphs. We plan to study the behavior of fluids in two dimensions which are close to extremal for estimates coming from the work of Beale, Kato, and Majda. We plan to study problems in arithmetic combinatorics related to structure in and size of sets having no arithmetic progressions of length 3.The broader impact of the project will consist in organizing meetings around some of the elements discussed and in the training of students at various level, postdocs, graduate students, and undergraduates in ways that allow them to participate in and understand important work in mathematics. The PI is one of the organizers of a 3 month program at IPAM centered on uses of the algebraic method in discrete extremal combinatorics, a practice he helped pioneer in his work with Guth on the Joints problem and on the Erdos discrete distance problem. This meeting will bring together scores of mathematicians: senior faculty, junior faculty, but especially postdocs and graduate students, allowing them to fruitfully meet and discuss this exciting and growing field. Such meetings are essential in the development of a workforce of young mathematicians. This grant will help the PI in his training of graduate students and postdocs, in some cases providing a bit of support. Focused training of junior researchers by more senior one, which is carried on through the solution of problems, is crucial to the creation of the dynamic work force we have in the pure mathematics community. The PI is starting a new job at Caltech which he is very excited about. One broad impact that he will have is teaching a course called Math 1a, required of all Caltech freshmen. It is essentially an accelerated elementary analysis aimed at scientists and engineers. That such a course will be taught by a research analyst, making an impact on cutting edge problems through essentially universal ideas in analysis, will enrich the course, giving the students a good feel of what mathematics is really about.
可以粗略描述为“硬分析”的方法可以应用于许多领域。这些方法涉及到不平等,即使用估计而不是确切的恒等式。为了得到这些,人们可以使用像调和分析中特别出现的方法那样的分而治之的方法,例如Calderon-Zygmund引理和停止时间。人们可以使用变换方法,特别是傅里叶变换来确定频率在问题中的作用。通常最重要的是对问题建模的作用,这在数学上意味着找到反映原始问题困难的简单模型问题。在这个方案中,我们计划使用这些硬分析方法来研究一些不同领域中感兴趣的问题,我们计划通过分析二部图的复杂性来寻找某类复杂性问题的下界,因为二部图没有完全的2乘2子图的性质。我们计划研究流体在两个维度上的行为,这些行为接近于Beale,Kato和Majda工作的估计的极值。我们计划研究算术组合学中与没有长度为3的算术级数的集合的结构和大小有关的问题。该项目的更广泛的影响将在于围绕所讨论的一些元素组织会议,并以允许他们参与和理解数学中的重要工作的方式对不同水平的学生、博士后、研究生和本科生进行培训。PI是IPAM为期3个月的项目的组织者之一,该项目集中于离散极值组合数学中代数方法的使用,他在与Guth一起研究关节问题和鄂尔多斯离散距离问题时帮助开创了这一实践。这次会议将汇聚数十名数学家:高级教师、初级教师,尤其是博士后和研究生,让他们能够富有成效地会面并讨论这个令人兴奋和不断增长的领域。这样的会议对于培养一批年轻的数学家来说是必不可少的。这笔补助金将帮助私教培养研究生和博士后,在某些情况下还会提供一些支持。通过解决问题的方式对初级研究人员进行集中培训,这对我们在纯数学领域创造充满活力的劳动力至关重要。这位私家侦探在加州理工学院开始了一份新工作,他对此感到非常兴奋。他将产生的一个广泛影响是教授一门名为数学1a的课程,这是加州理工学院所有新生的必修课。它本质上是一种针对科学家和工程师的加速基本分析。这样一门课程将由一名研究分析师教授,通过分析中的基本普遍思想对前沿问题产生影响,这将丰富这门课程,让学生对数学的真正含义有一个很好的感受。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nets Katz其他文献

Nets Katz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nets Katz', 18)}}的其他基金

Additive Nonsmoothing, the Kakeya Problem, and Fluid Mechanics
加性非光滑、挂屋问题和流体力学
  • 批准号:
    1565904
  • 财政年份:
    2016
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Continuing Grant
The Kakeya problem and additive combinatorics
Kakeya 问题和加性组合数学
  • 批准号:
    1001607
  • 财政年份:
    2010
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Planar Harmonic Analysis
平面谐波分析
  • 批准号:
    0653763
  • 财政年份:
    2007
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Algebraic and Probabilistic examples in combinatorial geometry
组合几何中的代数和概率例子
  • 批准号:
    0432237
  • 财政年份:
    2004
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Continuing Grant
Hard Problems in Hard Analysis
硬分析中的难题
  • 批准号:
    0100601
  • 财政年份:
    2001
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Combinatorial Questions in Harmonic Analysis
调和分析中的组合问题
  • 批准号:
    9801410
  • 财政年份:
    1998
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9306022
  • 财政年份:
    1993
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Fellowship Award

相似国自然基金

物体运动对流场扰动的数学模型研究
  • 批准号:
    51072241
  • 批准年份:
    2010
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目
Computational Methods for Analyzing Toponome Data
  • 批准号:
    60601030
  • 批准年份:
    2006
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Travel: NSF Student Travel Grant for 2023 Conference on Computational Complexity
旅行:2023 年计算复杂性会议 NSF 学生旅行补助金
  • 批准号:
    2326701
  • 财政年份:
    2023
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Understanding Genetic Complexity in Spina Bifida
了解脊柱裂的遗传复杂性
  • 批准号:
    10750235
  • 财政年份:
    2023
  • 资助金额:
    $ 28.4万
  • 项目类别:
FET: Small: A triangle of quantum mathematics, computational complexity, and geometry
FET:小:量子数学、计算复杂性和几何的三角关系
  • 批准号:
    2317280
  • 财政年份:
    2023
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
  • 批准号:
    2302174
  • 财政年份:
    2023
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
i-AKC: Integrated AIRR Knowledge Commons
i-AKC:综合 AIRR 知识共享
  • 批准号:
    10712558
  • 财政年份:
    2023
  • 资助金额:
    $ 28.4万
  • 项目类别:
Representation Theory Meets Computational Algebra and Complexity Theory
表示论遇见计算代数和复杂性理论
  • 批准号:
    2302375
  • 财政年份:
    2023
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Small: Computational Complexity and Algebraic Combinatorics
合作研究:AF:小:计算复杂性和代数组合
  • 批准号:
    2302173
  • 财政年份:
    2023
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Standard Grant
Taming complexity in computational electromagnetism: a model order reduction approach
控制计算电磁学的复杂性:模型降阶方法
  • 批准号:
    RGPIN-2019-05060
  • 财政年份:
    2022
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Discovery Grants Program - Individual
Computational Complexity of Geometric and Combinatorial Problems
几何和组合问题的计算复杂性
  • 批准号:
    RGPIN-2016-04274
  • 财政年份:
    2022
  • 资助金额:
    $ 28.4万
  • 项目类别:
    Discovery Grants Program - Individual
Data Management and Analysis Core
数据管理与分析核心
  • 批准号:
    10333814
  • 财政年份:
    2022
  • 资助金额:
    $ 28.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了