The Kakeya problem and additive combinatorics

Kakeya 问题和加性组合数学

基本信息

  • 批准号:
    1001607
  • 负责人:
  • 金额:
    $ 15.24万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2010
  • 资助国家:
    美国
  • 起止时间:
    2010-07-01 至 2013-06-30
  • 项目状态:
    已结题

项目摘要

This project is concerned with various problems in additive combinatorics and in particular with their applications to the Kakeya problem. The Kakeya problem asks, loosely speaking, how small a set in Euclidean space can be if it contains a unit line segment in every direction. More precisely, one would like lower bounds on the Hausdorff dimension, and it is conjectured that the lower bound should be the dimension of the Euclidean space. The conjecture has long been known true in the plane, but is much more difficult in higher dimensions and has inspired a great deal of work using techniques from fields ranging from harmonic analysis to commutative algebra to logic. In a paper with Laba and Tao, the author helped develop the connection of the Kakeya problem to sum-product theory. This is the theory of lower bounds on the sumset and product set of some finite subset of a field (or ring.) Sum product theory has been developing quickly over the past decade, and we now hope we know enough to come close to resolution in dimension 3, using some recent techniques of Bourgain, Konyagin, and others. In particular, we hope to show that the Assouad dimension of a Kakeya set in three dimensions is 3.From the earliest part of our mathematical educations, we learn that addition and multiplication are two of the most important mathematical processes, and that they are widely applicable to a number of real world problems. Surprisingly, not everything about the way in which addition and multiplication are connected is completely understood. We have recently learned that in a certain sense, addition and multiplication do not go well together - if a set does not expand much under addition, it must expand under multiplication, and vice versa. This principle is expressed in a number of "sum product" theorems. Sum Product theory has led to a lot of excitement in the last few years. It has applications in the combinatorics and geometric measure theory, the parts of mathematics for which it was developed, as well as in theoretical computer science, where expanding sets are used to generate pseudo-randomness. This project deals both with the basic theory of sums and products as well as with their deep mathematical applications. Continued work in this area is certain to lead to further applications.
本项目涉及加性组合学中的各种问题,特别是它们在Kakeya问题中的应用。粗略地说,Kakeya问题问的是,如果欧几里得空间中的一个集合在每个方向上都包含一个单位线段,它可以有多小。更准确地说,我们想要的是豪斯多夫维的下界,我们推测这个下界应该是欧几里德空间的维数。这个猜想在平面上早就被认为是正确的,但在高维上就困难得多,并且激发了大量的工作,这些工作使用了从调和分析到交换代数再到逻辑等领域的技术。在与Laba和Tao合著的一篇论文中,作者帮助建立了Kakeya问题与和积理论的联系。这是关于域(或环)的有限子集的sumset和product set下界的理论。和积理论在过去的十年中发展迅速,我们现在希望我们有足够的知识来接近三维的分辨率,使用布尔甘、科尼亚金和其他人的一些最新技术。特别地,我们希望证明三维空间中Kakeya集合的Assouad维数是3。从我们数学教育的最初部分开始,我们就知道加法和乘法是两个最重要的数学过程,它们被广泛应用于许多现实世界的问题。令人惊讶的是,并不是所有关于加法和乘法的联系方式都被完全理解了。我们最近了解到,在某种意义上,加法和乘法不能很好地结合在一起——如果一个集合在加法下不能扩展很多,那么它必须在乘法下扩展,反之亦然。这个原理用一些“和积”定理来表示。和积理论在过去几年中引起了许多兴奋。它在组合学和几何测量理论中有应用,这是它发展的数学部分,在理论计算机科学中也有应用,其中扩展集用于生成伪随机性。这个项目既涉及和和乘积的基本理论,也涉及它们的深层数学应用。在这一领域的持续工作肯定会导致进一步的应用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nets Katz其他文献

Nets Katz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nets Katz', 18)}}的其他基金

Additive Nonsmoothing, the Kakeya Problem, and Fluid Mechanics
加性非光滑、挂屋问题和流体力学
  • 批准号:
    1565904
  • 财政年份:
    2016
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Continuing Grant
Estimates in computational complexity, fluid mechanics, additive combinatorics and analysis
计算复杂性、流体力学、加性组合学和分析的估计
  • 批准号:
    1266104
  • 财政年份:
    2013
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Continuing Grant
Planar Harmonic Analysis
平面谐波分析
  • 批准号:
    0653763
  • 财政年份:
    2007
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Standard Grant
Algebraic and Probabilistic examples in combinatorial geometry
组合几何中的代数和概率例子
  • 批准号:
    0432237
  • 财政年份:
    2004
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Continuing Grant
Hard Problems in Hard Analysis
硬分析中的难题
  • 批准号:
    0100601
  • 财政年份:
    2001
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Standard Grant
Combinatorial Questions in Harmonic Analysis
调和分析中的组合问题
  • 批准号:
    9801410
  • 财政年份:
    1998
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Standard Grant
Mathematical Sciences:Postdoctoral Research Fellowship
数学科学:博士后研究奖学金
  • 批准号:
    9306022
  • 财政年份:
    1993
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Fellowship Award

相似国自然基金

流体湍流运动的相关数学分析
  • 批准号:
    10971174
  • 批准年份:
    2009
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
不可压流体力学方程中的一些问题
  • 批准号:
    10771177
  • 批准年份:
    2007
  • 资助金额:
    17.0 万元
  • 项目类别:
    面上项目
N-体问题的中心构型及动力系统的分支理论
  • 批准号:
    10601071
  • 批准年份:
    2006
  • 资助金额:
    10.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Hilbert's Sixth Problem: From Particles to Waves
希尔伯特第六个问题:从粒子到波
  • 批准号:
    2350242
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Continuing Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y036433/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Research Grant
Barking up the right trees – A microbial solution for our methane problem
树皮正确 — 解决甲烷问题的微生物解决方案
  • 批准号:
    DE240100338
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Discovery Early Career Researcher Award
Hunting Dark Satellites Problem:ダークマターパラドクスの解明
寻找暗卫星问题:解开暗物质悖论
  • 批准号:
    24K07085
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Is to achieve a breakthrough in the problem of how to reliably control the many qubits in an errorfree and scalable way.
就是要在如何以无错误且可扩展的方式可靠地控制众多量子比特的问题上取得突破。
  • 批准号:
    2906479
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Studentship
CAREER: Inviting all 21st century problem-solvers: Building equity by de-tracking middle school mathematics instruction
职业:邀请所有 21 世纪的问题解决者:通过打破中学数学教学的轨道来建立公平
  • 批准号:
    2336391
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Continuing Grant
MCA: Problem-Based Learning for Warehousing and Order Fulfillment
MCA:基于问题的仓储和订单履行学习
  • 批准号:
    2322250
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Standard Grant
Promise Constraint Satisfaction Problem: Structure and Complexity
承诺约束满足问题:结构和复杂性
  • 批准号:
    EP/X033201/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Fellowship
Solvability of Parabolic Regularity problem in Lebesgue spaces
勒贝格空间中抛物线正则问题的可解性
  • 批准号:
    EP/Y033078/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Research Grant
Towards a practical quantum advantage: Confronting the quantum many-body problem using quantum computers
迈向实用的量子优势:使用量子计算机应对量子多体问题
  • 批准号:
    EP/Y036069/1
  • 财政年份:
    2024
  • 资助金额:
    $ 15.24万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了