Mathematical Foundations for Yang-Mills Theory, Randomly Growing Surfaces, and Related Systems
杨米尔斯理论、随机生长曲面和相关系统的数学基础
基本信息
- 批准号:2153654
- 负责人:
- 金额:$ 33万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-07-01 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This project will study several questions in probability theory. The first class concerns the construction of Euclidean Yang-Mills theories. Yang-Mills theories are the building blocks of the Standard Model of particle physics, which do not yet have a rigorous mathematical foundation. The project aims to make progress towards the goal of giving a mathematical foundation to Yang-Mills theories. The second class of questions is about the growth of random surfaces and convergence to Kardar-Parisi-Zhang (KPZ) scaling limits. The KPZ equation is hypothesized to be the canonical model for the growth of random interfaces (essentially, any rough surface occurring in nature), but other than in a handful of cases, such claims generally remain out of the reach of rigorous mathematics. The project aims to make progress towards a more comprehensive understanding of KPZ growth. The project will also provide research training opportunities at graduate level.The Yang-Mills project will establish new results about the Yang-Mills heat equation. It is known how to construct solutions to the Yang-Mills heat equation when the initial data is a function with some regularity. This project will attempt to construct, for the first time, a solution of the Yang-Mills heat equation when the initial data is a random distribution. These solutions will then be used to construct state spaces for Yang-Mills theories. The project on the KPZ equation provides a new way to look at the nature of convergence to the KPZ equation, by looking at local, rather than global, behavior, and showing that such behavior can be proven for arbitrary scaling limits under suitable assumptions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这个项目将研究概率论中的几个问题。第一类是关于欧几里得杨-米尔斯理论的构造。杨-米尔斯理论是粒子物理学标准模型的基石,它还没有严格的数学基础。该项目的目的是朝着杨米尔斯理论的数学基础的目标取得进展。第二类问题是关于随机曲面的增长和收敛到Kardar-Parisi-Zhang(KPZ)标度极限。KPZ方程被假设为随机界面(本质上是自然界中出现的任何粗糙表面)生长的规范模型,但除了少数情况外,这种说法通常仍然超出严格数学的范围。该项目旨在更全面地了解KPZ的增长。该项目还将提供研究生水平的研究培训机会。杨-米尔斯项目将建立关于杨-米尔斯热方程的新结果。已知当初始数据是具有某种正则性的函数时,如何构造杨-米尔斯热方程的解。本项目将首次尝试构造初始数据为随机分布时杨-米尔斯热方程的解。这些解将被用来构造杨-米尔斯理论的状态空间。KPZ方程的项目提供了一种新的方式来看待收敛到KPZ方程的性质,通过查看局部,而不是全局,行为,并表明这种行为可以证明在适当的假设下任意缩放限制。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Yang-Mills heat flow with random distributional initial data
- DOI:10.1080/03605302.2023.2169937
- 发表时间:2021-11
- 期刊:
- 影响因子:1.9
- 作者:Sky Cao;S. Chatterjee
- 通讯作者:Sky Cao;S. Chatterjee
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sourav Chatterjee其他文献
Spectral gap of nonreversible Markov chains
不可逆马尔可夫链的谱隙
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
MetQuan - A Comprehensive Toolkit for Variational Quantum Sensing and Metrology
MetQuan - 用于变分量子传感和计量的综合工具包
- DOI:
10.1109/comsnets59351.2024.10427198 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Kunal Sinha;Rajas Dalvi;M. G. Chandra;Sourav Chatterjee - 通讯作者:
Sourav Chatterjee
Retraction Note: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-024-02007-7 - 发表时间:
2024-07-23 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Liouville Theory: An Introduction to Rigorous Approaches
刘维尔理论:严格方法简介
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sourav Chatterjee;Edward Witten - 通讯作者:
Edward Witten
RETRACTED ARTICLE: ICB3E induces iNOS expression by ROS-dependent JNK and ERK activation for apoptosis of leukemic cells
- DOI:
10.1007/s10495-011-0695-9 - 发表时间:
2012-01-18 - 期刊:
- 影响因子:8.100
- 作者:
Nabendu Biswas;Sanjit K. Mahato;Avik Acharya Chowdhury;Jaydeep Chaudhuri;Anirban Manna;Jayaraman Vinayagam;Sourav Chatterjee;Parasuraman Jaisankar;Utpal Chaudhuri;Santu Bandyopadhyay - 通讯作者:
Santu Bandyopadhyay
Sourav Chatterjee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sourav Chatterjee', 18)}}的其他基金
Matrix Completion with Non-uniform Missing Patterns, a New Measure of Conditional Dependence, and Applications to Feature Selection
具有非均匀缺失模式的矩阵补全、条件依赖性的新度量以及在特征选择中的应用
- 批准号:
2113242 - 财政年份:2021
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
Two-Dimensional KPZ Evolution, Fluctuation Lower Bounds, and Ultrametricity
二维 KPZ 演化、波动下界和超计量性
- 批准号:
1855484 - 财政年份:2019
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Lattice Gauge Theories, Importance Sampling, and Quantum Unique Ergodicity
格规理论、重要性采样和量子唯一遍历性
- 批准号:
1608249 - 财政年份:2016
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1441513 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Concentration of measure, large deviations, normal approximation and applications
测量集中、大偏差、正态近似及应用
- 批准号:
1309618 - 财政年份:2013
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Disordered systems, dense graphs, normal approximation and applications
无序系统、稠密图、正态逼近及应用
- 批准号:
1005312 - 财政年份:2010
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Normal Approximation, Fair Allocations, Interacting Brownian Particles, and Applications
正态近似、公平分配、相互作用的布朗粒子和应用
- 批准号:
0707054 - 财政年份:2007
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
相似海外基金
Mathematical Foundations of Intelligence: An "Erlangen Programme" for AI
智能的数学基础:人工智能的“埃尔兰根计划”
- 批准号:
EP/Y028872/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Statistical Foundations for Detecting Anomalous Structure in Stream Settings (DASS)
检测流设置中的异常结构的统计基础 (DASS)
- 批准号:
EP/Z531327/1 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Research Grant
Collaborative Research: AF: Medium: Foundations of Oblivious Reconfigurable Networks
合作研究:AF:媒介:遗忘可重构网络的基础
- 批准号:
2402851 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
Conference: Theory and Foundations of Statistics in the Era of Big Data
会议:大数据时代的统计学理论与基础
- 批准号:
2403813 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Standard Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Architectural Foundations for Practical Privacy-Preserving Computation
职业:实用隐私保护计算的架构基础
- 批准号:
2340137 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Foundations, Algorithms, and Tools for Browser Invalidation
职业:浏览器失效的基础、算法和工具
- 批准号:
2340192 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant
CAREER: Foundations of semi-infinite and equilibrium constrained optimization
职业:半无限和平衡约束优化的基础
- 批准号:
2340858 - 财政年份:2024
- 资助金额:
$ 33万 - 项目类别:
Continuing Grant