Random matrixes: Eigenvalues distributions and Universality
随机矩阵:特征值分布和普遍性
基本信息
- 批准号:1307797
- 负责人:
- 金额:$ 34.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-06-01 至 2016-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the main goals of the theory of random matrices is to study distributions concerning the eigenvalues. In recent years, we have witnessed notable progresses on central problems in this area. The PI has been fortunate to participate in some these developments and he would like to propose to continue his research on these topics. In this proposal, he is going to discuss the current state of some of these problems, and propose to study several research problems that would lead to a more complete and deeper understanding of the subject, especially problems related to the universality phenomenon. Beside studying traditional questions on limiting distributions, we will also discuss non-asymptotic aspects of the theory, e.g. problems concerning large deviations. Many of these problems are important in applications in other fields, such as theoretical computer science and data mining.The theory of random matrices is a rich topic in mathematics. Beside being interesting on their own right, random matrices play fundamental role in various areas such as statistics, mathematical physics, combinatorics, theoretical computer science, etc. A famous example here is the study of physicist Wigner, who used the spectrum of random matrices as a model in nuclear physics, and consequently discovered the fundamental semi-circle law. The main project in this proposal is to study limiting distribution the spectrum of random matrices, at the finest scale, motivated by long standing problems from mathematical physics and probability. We also believe that the methods being developed in the project will be useful for other purposes, such as the study of large (random) networks and large data from random samples.
随机矩阵理论的主要目标之一是研究有关特征值的分布。 近年来,我们看到在这一领域的核心问题上取得了显著进展。PI有幸参与了其中的一些发展,他希望继续对这些主题进行研究。在这份提案中,他将讨论其中一些问题的现状,并建议研究几个研究问题,以更全面和更深入地了解这一主题,特别是与普遍性现象有关的问题。除了研究传统的极限分布问题外,我们还将讨论理论的非渐近方面,例如关于大偏差的问题。其中许多问题在其他领域的应用中也很重要,例如 理论计算机科学和数据挖掘。随机矩阵理论是数学中一个丰富的主题。除了有趣的本身权利,随机矩阵发挥了重要作用,在各个领域,如统计,数学物理,组合学,理论计算机科学等一个著名的例子是研究物理学家维格纳,谁使用的频谱随机矩阵作为一个模型在核物理,并因此发现了基本的半圆定律。主要项目在 本研究的目的是在最精细的尺度上研究随机矩阵谱的极限分布,其动机是数学物理和概率的长期问题。我们还相信,该项目中开发的方法将用于其他目的,例如研究大型(随机)网络和来自随机样本的大量数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Van Vu其他文献
Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae.
同时沉默内切-β-1,4 木聚糖酶基因揭示了它们在稻瘟病菌毒力中的作用。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nguyen;Q.B.;Itoh;K.;Van Vu;B.;Tosa;Y.;Nakayashiki;H. - 通讯作者:
H.
Roots of random polynomials with arbitrary coefficients
具有任意系数的随机多项式的根
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yen Q. Do;Oanh Nguyen;Van Vu - 通讯作者:
Van Vu
Random walks with different directions
- DOI:
10.1007/s00440-015-0635-7 - 发表时间:
2015-07-03 - 期刊:
- 影响因子:1.600
- 作者:
Simão Herdade;Van Vu - 通讯作者:
Van Vu
Characterization of IVIG infusion adverse reactions reported at a tertiary care immunology infusion center
三级护理免疫输注中心报告的静脉免疫球蛋白输注不良反应的特征
- DOI:
10.1016/j.jaci.2022.12.567 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:11.200
- 作者:
Luke Legakis;Junghee Shin;Van Vu;Christina Price;Jason Kwah - 通讯作者:
Jason Kwah
On a conjecture of Alon
- DOI:
10.1016/j.jnt.2008.12.012 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
Linh Tran;Van Vu;Philip Matchett Wood - 通讯作者:
Philip Matchett Wood
Van Vu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Van Vu', 18)}}的其他基金
Statistical Problems Through a New Perturbation Theory
通过新的微扰理论解决统计问题
- 批准号:
2311252 - 财政年份:2023
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Anti-Concentration, Random Matrices, and Random Functions
反集中、随机矩阵和随机函数
- 批准号:
1902825 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Participant Support for the Conference Building Bridges II
与会者对“搭建桥梁 II”会议的支持
- 批准号:
1807521 - 财政年份:2018
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
- 批准号:
1737839 - 财政年份:2017
- 资助金额:
$ 34.5万 - 项目类别:
Standard Grant
Anti-Concentration, Random Structures, and Sumsets
反集中、随机结构和总和
- 批准号:
1500944 - 财政年份:2015
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
- 批准号:
1212424 - 财政年份:2011
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
- 批准号:
0901216 - 财政年份:2009
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0635606 - 财政年份:2006
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0239316 - 财政年份:2003
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
Discrete Random Structures and Additive Number Theory
离散随机结构和加法数论
- 批准号:
0200357 - 财政年份:2002
- 资助金额:
$ 34.5万 - 项目类别:
Continuing Grant
相似海外基金
Self-assembling matrixes to recreate the colorectal tumour niche (iCASE project with AZ)
自组装基质重建结直肠肿瘤生态位(与 AZ 合作的 iCASE 项目)
- 批准号:
2750177 - 财政年份:2022
- 资助金额:
$ 34.5万 - 项目类别:
Studentship
Analysis of the mechanism of cleft palate development after palatal fusion-Effect of extracellular matrixes-
腭融合后腭裂发生机制分析-细胞外基质的作用-
- 批准号:
19K10325 - 财政年份:2019
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Automated analysis of free amino acids for acrylamide reduction in wheat-based food matrixes: applications in food production and commercial testing
自动分析游离氨基酸以减少小麦食品基质中的丙烯酰胺:在食品生产和商业测试中的应用
- 批准号:
BB/P017541/1 - 财政年份:2016
- 资助金额:
$ 34.5万 - 项目类别:
Research Grant
Characterizing energy wheel matrixes through transient testing
通过瞬态测试表征能量轮矩阵
- 批准号:
477955-2015 - 财政年份:2015
- 资助金额:
$ 34.5万 - 项目类别:
Engage Grants Program
Development of intermediate temperature fuel cells with inorganic electrolytes hybridized with inorganic glass matrixes
无机电解质与无机玻璃基体杂化的中温燃料电池的开发
- 批准号:
26820321 - 财政年份:2014
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Multiple quantum filtered NMR studies of D2O in hydrated polymers and bimolecular matrixes
水合聚合物和双分子基质中 D2O 的多重量子过滤 NMR 研究
- 批准号:
450674-2013 - 财政年份:2013
- 资助金额:
$ 34.5万 - 项目类别:
University Undergraduate Student Research Awards
MQF NMR studies of D2O in hydrated polymers and bimolecular matrixes
水合聚合物和双分子基质中 D2O 的 MQF NMR 研究
- 批准号:
430840-2012 - 财政年份:2012
- 资助金额:
$ 34.5万 - 项目类别:
University Undergraduate Student Research Awards
Development of the new cell-free device for sever heart failure by restructuring of artificial stem cell niche using extracellular matrixes and stem cell recruitment/differentiation factors
通过使用细胞外基质和干细胞募集/分化因子重建人工干细胞生态位,开发用于治疗严重心力衰竭的新型无细胞装置
- 批准号:
21249075 - 财政年份:2009
- 资助金额:
$ 34.5万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Functional Polymer Matrixes for Site-Specific, Image Guided Drug Delivery
用于特定位点、图像引导药物输送的功能性聚合物基质
- 批准号:
7904904 - 财政年份:2006
- 资助金额:
$ 34.5万 - 项目类别:
Functional Polymer Matrixes for Site-Specific, Image Guided Drug Delivery
用于特定位点、图像引导药物输送的功能性聚合物基质
- 批准号:
7904385 - 财政年份:2006
- 资助金额:
$ 34.5万 - 项目类别: