Anti-Concentration, Random Matrices, and Random Functions
反集中、随机矩阵和随机函数
基本信息
- 批准号:1902825
- 负责人:
- 金额:$ 22.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-05-15 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The goal of the project is to study problems concerning distribution of discrete random variables, such as random polynomials, random sums, and random matrices. These problems have many connections to other parts of mathematics, as well as applications in statistics and machine learning. The PI aims to continue his development of a theory of anti-concentration. This theory has found applications in various areas of mathematics, including probability, numercial linear algebra, and complexity theory. He will also investigate an old and natural problem of Erdos and Moser concerning sum-avoiding sets in the non-abelian setting, following his recent work with T. Tao concerning the abelian case. In another part of the proposal, the PI proposes to study several problems concerning random matrices and random functions. Many of these problems are very basic and easy to state, but have been major challenges to the mathematics community for a long time, and progress on them has been made very recently.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是研究离散随机变量的分布问题,如随机多项式、随机和、随机矩阵等。这些问题与数学的其他部分以及统计学和机器学习中的应用有许多联系。PI的目标是继续他的反集中理论的发展。这个理论在数学的各个领域都有应用,包括概率论、数值线性代数和复杂性理论。他还将研究Erdos和Moser关于非阿贝尔情况下避和集的一个古老而自然的问题,继他最近与T. Tao关于阿贝尔情况的工作之后。在提案的另一部分,PI提出研究几个关于随机矩阵和随机函数的问题。这些问题中的许多都是非常基本和容易表述的,但长期以来一直是数学界面临的主要挑战,最近才取得进展。该奖项反映了美国国家科学基金会的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Random matrix products: Universality and least singular values
随机矩阵乘积:普适性和最小奇异值
- DOI:10.1214/19-aop1396
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Kopel, Phil;O’Rourke, Sean;Vu, Van
- 通讯作者:Vu, Van
Roots of random functions: A framework for local universality
随机函数的根:局部普遍性的框架
- DOI:10.1353/ajm.2022.0000
- 发表时间:2022
- 期刊:
- 影响因子:1.7
- 作者:Nguyen, Oanh;Vu, Van
- 通讯作者:Vu, Van
Central limit theorems for the real zeros of Weyl polynomials
- DOI:10.1353/ajm.2020.0034
- 发表时间:2017-07
- 期刊:
- 影响因子:1.7
- 作者:Yen Q. Do;V. Vu
- 通讯作者:Yen Q. Do;V. Vu
Random polynomials: Central limit theorems for the real roots
- DOI:10.1215/00127094-2020-0089
- 发表时间:2019-04
- 期刊:
- 影响因子:2.5
- 作者:Oanh Nguyen;V. Vu
- 通讯作者:Oanh Nguyen;V. Vu
Recent progress in combinatorial random matrix theory
组合随机矩阵理论的最新进展
- DOI:10.1214/20-ps346
- 发表时间:2021
- 期刊:
- 影响因子:1.6
- 作者:Vu, Van H.
- 通讯作者:Vu, Van H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Van Vu其他文献
Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae.
同时沉默内切-β-1,4 木聚糖酶基因揭示了它们在稻瘟病菌毒力中的作用。
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Nguyen;Q.B.;Itoh;K.;Van Vu;B.;Tosa;Y.;Nakayashiki;H. - 通讯作者:
H.
Roots of random polynomials with arbitrary coefficients
具有任意系数的随机多项式的根
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Yen Q. Do;Oanh Nguyen;Van Vu - 通讯作者:
Van Vu
Random walks with different directions
- DOI:
10.1007/s00440-015-0635-7 - 发表时间:
2015-07-03 - 期刊:
- 影响因子:1.600
- 作者:
Simão Herdade;Van Vu - 通讯作者:
Van Vu
Characterization of IVIG infusion adverse reactions reported at a tertiary care immunology infusion center
三级护理免疫输注中心报告的静脉免疫球蛋白输注不良反应的特征
- DOI:
10.1016/j.jaci.2022.12.567 - 发表时间:
2023-02-01 - 期刊:
- 影响因子:11.200
- 作者:
Luke Legakis;Junghee Shin;Van Vu;Christina Price;Jason Kwah - 通讯作者:
Jason Kwah
On a conjecture of Alon
- DOI:
10.1016/j.jnt.2008.12.012 - 发表时间:
2009-11-01 - 期刊:
- 影响因子:
- 作者:
Linh Tran;Van Vu;Philip Matchett Wood - 通讯作者:
Philip Matchett Wood
Van Vu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Van Vu', 18)}}的其他基金
Statistical Problems Through a New Perturbation Theory
通过新的微扰理论解决统计问题
- 批准号:
2311252 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Participant Support for the Conference Building Bridges II
与会者对“搭建桥梁 II”会议的支持
- 批准号:
1807521 - 财政年份:2018
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
- 批准号:
1737839 - 财政年份:2017
- 资助金额:
$ 22.5万 - 项目类别:
Standard Grant
Anti-Concentration, Random Structures, and Sumsets
反集中、随机结构和总和
- 批准号:
1500944 - 财政年份:2015
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Random matrixes: Eigenvalues distributions and Universality
随机矩阵:特征值分布和普遍性
- 批准号:
1307797 - 财政年份:2013
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
- 批准号:
1212424 - 财政年份:2011
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
- 批准号:
0901216 - 财政年份:2009
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0635606 - 财政年份:2006
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
- 批准号:
0239316 - 财政年份:2003
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
Discrete Random Structures and Additive Number Theory
离散随机结构和加法数论
- 批准号:
0200357 - 财政年份:2002
- 资助金额:
$ 22.5万 - 项目类别:
Continuing Grant
相似海外基金
Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
- 批准号:
EP/Z000297/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
IMAGINE - Ion beaM Analysis to decipher the bioloGical response Induced by Nanoplastics at Environmentally realistic concentration
想象 - 离子束分析可破译纳米塑料在环境实际浓度下引起的生物反应
- 批准号:
EP/Z000629/1 - 财政年份:2024
- 资助金额:
$ 22.5万 - 项目类别:
Research Grant
Visualizing Janowska: Creating a Digital Architectural Model of a Nazi Concentration Camp
可视化 Janowska:创建纳粹集中营的数字建筑模型
- 批准号:
AH/X00774X/1 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Fellowship
Optimization of work efficiency with quantitative evaluation of concentration using wearable devices
使用可穿戴设备定量评估注意力,优化工作效率
- 批准号:
23K04305 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Simultaneous treatment technology for high-concentration NOx, SOx, and particulate matter from ships by plasma hybrid cleaning method
等离子混合清洗法同时处理船舶高浓度NOx、SOx和颗粒物技术
- 批准号:
23H01626 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Investigation of the strategy used by intestinal parasites to high sulfide concentration environment
肠道寄生虫对高硫化物浓度环境的策略研究
- 批准号:
23H02711 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Health effects of low-concentration, non-urban air pollution: health impacts of ship emission controls
低浓度非城市空气污染对健康的影响:船舶排放控制对健康的影响
- 批准号:
23H03158 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of a continuous PM0.1 mass concentration monitor with high temporal resolution
开发具有高时间分辨率的连续 PM0.1 质量浓度监测仪
- 批准号:
23K18540 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Realization of photo-responsive CO2 concentration systems by using polar gradient-reaction fields afforded by surfactants and photochromic molecules
利用表面活性剂和光致变色分子提供的极性梯度反应场实现光响应二氧化碳浓度系统
- 批准号:
23K13828 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Novel single-cell mass spectrometry methods to assess the role of intracellular drug concentration and metabolism in antimicrobial treatment failure
评估细胞内药物浓度和代谢在抗菌治疗失败中的作用的新型单细胞质谱方法
- 批准号:
10714351 - 财政年份:2023
- 资助金额:
$ 22.5万 - 项目类别: