Anti-Concentration, Random Structures, and Sumsets

反集中、随机结构和总和

基本信息

  • 批准号:
    1500944
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2015
  • 资助国家:
    美国
  • 起止时间:
    2015-06-15 至 2019-05-31
  • 项目状态:
    已结题

项目摘要

In this project, the goal is to investigate the distribution of random variables arising from practical problems such as solving linear systems of equations or finding the roots of high degree polynomials. These problems are critical in many developments in computer science and engineering. Finding roots of a polynomial is, in particular, a classical and fundamental problem with widespread applications. The main focus of the project is to prove that many natural distributions of random variables do not have large mass on a single point. With this new tool, the investigator hopes to provide answers to long-standing questions such as: In a typical case, how many roots of a polynomial of degree n are real? The principal investigator aims to develop a theory for the anti-concentration phenomenon. Anti-concentration inequalities have been playing an important role in many areas where probability is involved. Recent new insights in the field have led to a significant refinement of several classical results with a broad range of applications. The investigator plans to extend the new results to a more general (nonlinear) setting. Achievements in this direction will have an immediate impact in different fields. Another part of the project continues the study of random discrete structures, in particular, random matrices and random polynomials. The PI will investigate various basic problems, such as properties and distribution of random determinants, the non-existence of multiple eigenvalues and its relation to the QR algorithm, and the classical question: How many roots of a random polynomial are real? He will also investigate sum-set problems in additive combinatorics (for example, an old question of Erdos and Moser on sum-free sets in a group).
在这个项目中,目标是研究由实际问题引起的随机变量的分布,例如解线性方程组或寻找高次多项式的根。这些问题在计算机科学和工程的许多发展中都是至关重要的。特别是多项式的求根问题,是一个有着广泛应用的经典和基本问题。该项目的主要焦点是证明许多随机变量的自然分布在单个点上不具有大质量。通过这一新工具,研究人员希望为长期存在的问题提供答案,例如:在典型情况下,n次多项式的多少个根是实的?首席研究员的目标是发展一种反集中现象的理论。反集中不平等在许多涉及概率的领域发挥着重要作用。最近该领域的新见解导致了几个具有广泛应用范围的经典结果的显著改进。研究人员计划将新的结果推广到更一般的(非线性)环境中。这方面的成就将对不同领域产生立竿见影的影响。该项目的另一部分继续研究随机离散结构,特别是随机矩阵和随机多项式。PI将研究各种基本问题,如随机行列式的性质和分布,多重特征值的不存在及其与QR算法的关系,以及经典问题:随机多项式的多少根是实数?他还将研究可加组合学中的和集问题(例如,Erdos和Moser关于群中和自由集的一个老问题)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Van Vu其他文献

Simultaneous silencing of endo-β-1,4 xylanase genes reveals their roles in the virulence of Magnaporthe oryzae.
同时沉默内切-β-1,4 木聚糖酶基因揭示了它们在稻瘟病菌毒力中的作用。
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nguyen;Q.B.;Itoh;K.;Van Vu;B.;Tosa;Y.;Nakayashiki;H.
  • 通讯作者:
    H.
Roots of random polynomials with arbitrary coefficients
具有任意系数的随机多项式的根
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yen Q. Do;Oanh Nguyen;Van Vu
  • 通讯作者:
    Van Vu
Random walks with different directions
Characterization of IVIG infusion adverse reactions reported at a tertiary care immunology infusion center
三级护理免疫输注中心报告的静脉免疫球蛋白输注不良反应的特征
  • DOI:
    10.1016/j.jaci.2022.12.567
  • 发表时间:
    2023-02-01
  • 期刊:
  • 影响因子:
    11.200
  • 作者:
    Luke Legakis;Junghee Shin;Van Vu;Christina Price;Jason Kwah
  • 通讯作者:
    Jason Kwah
On a conjecture of Alon
  • DOI:
    10.1016/j.jnt.2008.12.012
  • 发表时间:
    2009-11-01
  • 期刊:
  • 影响因子:
  • 作者:
    Linh Tran;Van Vu;Philip Matchett Wood
  • 通讯作者:
    Philip Matchett Wood

Van Vu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Van Vu', 18)}}的其他基金

Statistical Problems Through a New Perturbation Theory
通过新的微扰理论解决统计问题
  • 批准号:
    2311252
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Anti-Concentration, Random Matrices, and Random Functions
反集中、随机矩阵和随机函数
  • 批准号:
    1902825
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Participant Support for the Conference Building Bridges II
与会者对“搭建桥梁 II”会议的支持
  • 批准号:
    1807521
  • 财政年份:
    2018
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
ATD: Collaborative Research: Spectral Interpretations of Essential Subgraphs for Threat Discoveries
ATD:协作研究:威胁发现的基本子图的光谱解释
  • 批准号:
    1737839
  • 财政年份:
    2017
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Random matrixes: Eigenvalues distributions and Universality
随机矩阵:特征值分布和普遍性
  • 批准号:
    1307797
  • 财政年份:
    2013
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
  • 批准号:
    1212424
  • 财政年份:
    2011
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Random Graphs, Random Matrices and Subset sums
随机图、随机矩阵和子集和
  • 批准号:
    0901216
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
  • 批准号:
    0635606
  • 财政年份:
    2006
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Sharp Concentration and Probabilistic Methods
职业:高度集中和概率方法
  • 批准号:
    0239316
  • 财政年份:
    2003
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Discrete Random Structures and Additive Number Theory
离散随机结构和加法数论
  • 批准号:
    0200357
  • 财政年份:
    2002
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant

相似海外基金

Concentration Phenomena in Nonlinear PDEs and Elasto-plasticity Theory
非线性偏微分方程中的集中现象和弹塑性理论
  • 批准号:
    EP/Z000297/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
IMAGINE - Ion beaM Analysis to decipher the bioloGical response Induced by Nanoplastics at Environmentally realistic concentration
想象 - 离子束分析可破译纳米塑料在环境实际浓度下引起的生物反应
  • 批准号:
    EP/Z000629/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Visualizing Janowska: Creating a Digital Architectural Model of a Nazi Concentration Camp
可视化 Janowska:创建纳粹集中营的数字建筑模型
  • 批准号:
    AH/X00774X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Fellowship
Optimization of work efficiency with quantitative evaluation of concentration using wearable devices
使用可穿戴设备定量评估注意力,优化工作效率
  • 批准号:
    23K04305
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Simultaneous treatment technology for high-concentration NOx, SOx, and particulate matter from ships by plasma hybrid cleaning method
等离子混合清洗法同时处理船舶高浓度NOx、SOx和颗粒物技术
  • 批准号:
    23H01626
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Investigation of the strategy used by intestinal parasites to high sulfide concentration environment
肠道寄生虫对高硫化物浓度环境的策略研究
  • 批准号:
    23H02711
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Health effects of low-concentration, non-urban air pollution: health impacts of ship emission controls
低浓度非城市空气污染对健康的影响:船舶排放控制对健康的影响
  • 批准号:
    23H03158
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a continuous PM0.1 mass concentration monitor with high temporal resolution
开发具有高时间分辨率的连续 PM0.1 质量浓度监测仪
  • 批准号:
    23K18540
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Realization of photo-responsive CO2 concentration systems by using polar gradient-reaction fields afforded by surfactants and photochromic molecules
利用表面活性剂和光致变色分子提供的极性梯度反应场实现光响应二氧化碳浓度系统
  • 批准号:
    23K13828
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel single-cell mass spectrometry methods to assess the role of intracellular drug concentration and metabolism in antimicrobial treatment failure
评估细胞内药物浓度和代谢在抗菌治疗失败中的作用的新型单细胞质谱方法
  • 批准号:
    10714351
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了