Conditional Inference Algorithms for Graphs, Tables, and Point Processes

图、表和点过程的条件推理算法

基本信息

  • 批准号:
    1309004
  • 负责人:
  • 金额:
    $ 12万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2016-07-31
  • 项目状态:
    已结题

项目摘要

The statistical challenges posed by discrete-valued matrix data (such as contingency tables, co-occurrence tables, adjacency matrices of graphs and networks, and multivariate binary time series) can often be greatly reduced by focusing on the conditional distribution of the pattern of entries in the matrix, given the margins of the matrix. Although this conditioning simplifies the statistical challenges, it greatly increases the computational challenges of any associated statistical procedures. This project has two principle aims: (1) to design practical methods and algorithms for statistical inference about the conditional distribution of a matrix given its margins, and (2) to specialize these methods and algorithms to the scientific needs of a variety of disciplines, including neuroscience, ecology, network analysis, educational testing, and combinatorial approximation.With the advent of new technologies for gathering and storing large amounts of complex data, statistics is playing an increasingly central role in science, technology, engineering, medicine and commerce. These new data sources require new types of statistical thinking and improved statistical algorithms. This project develops new algorithms for the statistical analysis of networks, such as social networks, ecological networks, and brain networks. Preliminary results are already being used by neuroscience collaborators to better understand the structure of human seizures. This project also funds the training of graduate students who will become the next generation of innovators in science and engineering.
离散值矩阵数据(如列联表、共现表、图和网络的邻接矩阵以及多变量二进制时间序列)带来的统计挑战通常可以通过关注矩阵中条目模式的条件分布来大大减少,给定矩阵的边缘。 虽然这种条件简化了统计挑战,但它大大增加了任何相关统计程序的计算挑战。该项目有两个主要目标:(1)设计实用的方法和算法,用于对给定其裕度的矩阵的条件分布进行统计推断,以及(2)将这些方法和算法专门化以满足各种学科的科学需求,包括神经科学,生态学,网络分析,教育测试,随着收集和储存大量复杂数据的新技术的出现,统计在科学、技术、工程、医学和商业中发挥着越来越重要的作用。 这些新的数据源需要新型的统计思维和改进的统计算法。 该项目开发了用于网络统计分析的新算法,如社交网络,生态网络和大脑网络。 初步结果已经被神经科学合作者用于更好地了解人类癫痫发作的结构。 该项目还资助培养研究生,他们将成为下一代科学和工程创新者。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Harrison其他文献

Identification of Candidate Neural Biomarkers of Obsessive-Compulsive Symptom Intensity and Response to Deep Brain Stimulation
  • DOI:
    10.1016/j.biopsych.2023.02.174
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicole Provenza;Evan Dastin-van Rijn;Chandra Prakash Swamy;Luciano Branco;Saurabh Hinduja;Michelle Avendano-Ortega;Sarah A. Mckay;Gregory S. Vogt;Huy Dang;Bradford Roarr;Andrew Wiese;Ben Shofty;Jeffrey Herron;Matthew Harrison;Kelly Bijanki;Eric Storch;Jeffrey Cohn;Nuri Ince;David Borton;Wayne Goodman
  • 通讯作者:
    Wayne Goodman
Overcoming barriers to inclusion in education in India: A scoping review
  • DOI:
    10.1016/j.ssaho.2021.100237
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Lindsey Gale;Pranashree Bhushan;Shweta Eidnani;Lorraine Graham;Matthew Harrison;Lisa McKay-Brown;Rucha Pande;Shreya Shreeraman;Chandhni Sivashunmugam
  • 通讯作者:
    Chandhni Sivashunmugam
Aerially guided leak detection and repair: A pilot field study for evaluating the potential of methane emission detection and cost-effectiveness
空中引导泄漏检测和修复:评估甲烷排放检测潜力和成本效益的试点现场研究
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    S. Schwietzke;Matthew Harrison;Terri Lauderdale;K. Branson;S. Conley;Fiji C George;D. Jordan;G. R. Jersey;Changyong Zhang;H. L. Mairs;G. Pétron;R. Schnell
  • 通讯作者:
    R. Schnell
The Role of Conversational AI in Ageing and Dementia Care at Home: A Participatory Study
对话式人工智能在家庭老龄化和痴呆症护理中的作用:一项参与性研究
Supporting the T and the E in STEM: 2004-2010
支持 STEM 中的 T 和 E:2004-2010

Matthew Harrison的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Harrison', 18)}}的其他基金

2017 CRCNS Principal Investigators Meeting
2017年CRCNS首席研究员会议
  • 批准号:
    1741737
  • 财政年份:
    2017
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant

相似海外基金

Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
CAREER: Towards Tight Guarantees of Markov Chain Sampling Algorithms in High Dimensional Statistical Inference
职业:高维统计推断中马尔可夫链采样算法的严格保证
  • 批准号:
    2237322
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Continuing Grant
PRIMES: Practical Inference Algorithms to Detect Hybridization
PRIMES:检测杂交的实用推理算法
  • 批准号:
    2331660
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2341725
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
  • 批准号:
    10658217
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
Statistical Inference from Multiscale Biological Data: theory, algorithms, applications
多尺度生物数据的统计推断:理论、算法、应用
  • 批准号:
    EP/Y037375/1
  • 财政年份:
    2023
  • 资助金额:
    $ 12万
  • 项目类别:
    Research Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212508
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
Estimation and Inference via Computational Statistics Algorithms
通过计算统计算法进行估计和推理
  • 批准号:
    RGPIN-2019-04142
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Discovery Grants Program - Individual
Development of robust statistical and machine learning algorithms for extrapolation in causal inference
开发用于因果推理外推的稳健统计和机器学习算法
  • 批准号:
    2740759
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Studentship
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2212512
  • 财政年份:
    2022
  • 资助金额:
    $ 12万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了