Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface

材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学

基本信息

  • 批准号:
    1311849
  • 负责人:
  • 金额:
    $ 39.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Technical Abstract An international collaborative research program bringing together scientists from Germany (Marburg University), Japan (National Institute for Materials Science) and the USA (Universities of Pittsburgh and Florida) will investigate the correlation between the structural and dynamical properties of GaP/Si buried interfaces in order to enable the fundamental understanding and practical applications of such materials. The GaP/Si interface is a material with potential applications having a high sustainability impact for high efficiency solar cells and silicon optoelectronics. Buried interfaces, excited states, and interaction of light with nonequilibrium charge distributions represent challenges at the forefront of condensed matter physics experiment and theory. By combining expertise in materials growth, structure characterization, ultrafast electronic and phonon spectroscopy, and theory, our team will investigate the relationship between the structural and ultrafast optoelectronic properties of GaP/Si interfaces. The optical and charge transport properties at an interface between two electronic materials depend on the band alignment between them, and the atomic scale structure of the interface in subtle ways that are difficult to characterize by experiment an theory. We will employ coherent phonon spectroscopy to investigate the ultrafast response of the interfacial electronic and lattice subsystems to band gap excitation. We expect that the interfacial carrier distributions and the built-in electric fields will substantially influence the coupled carrier-lattice dynamics. By comparison with the dynamics of the component materials (single crystal Si and GaP, we will identify the components of the ultrafast response that can be attributed to the existence of the interface. The interface response will be investigated for materials grown under different conditions that influence the material composition and crystalline structure on the atomic to the nanometer scales. From the spectroscopic measurements and theoretical simulations we will identify how the material structure affects the optical and electronic properties of GaP/Si interface. The tight integration of material growth and analysis, with ultrafast spectroscopic measurements will enable GaP/Si material optimization for practical applications. The experimental methodology will be applicable to studies of a broad range of interfacial phenomena of technologically important electronic materials. Non-technical Abstract Optimized electronic materials enable efficient generation and utilization of energy for continued economic development. The GaP/Si interface has the potential for applications in high efficiency solar cells for solar-to-electrical energy conversion, as well as for enabling optical signal processing within Si based electronic devices. The function of such composite materials, however, depends on the interface between them. Even though the dimensions of the crystalline lattices of GaP and Si are nearly identical, enabling growth of nearly defect free GaP overlayers on Si, their disparate ionic and covalent characters cause the electronic properties at the interface to change abruptly. Therefore, the optical and electronic properties of the composite materials strongly depend on the atomic scale structure and composition of the interface. Studying the relationship between the structure and electronic properties of interfaces is extremely difficult because it requires the ability to grow materials with particular characteristics, to correlate the atomic structure with the growth parameters, to characterize the relationship between the structure and electronic properties, as well as to develop a theoretical model for the interface that can close the feedback between the structural and functional investigations. We have constituted a collaborative team involving scientists from Germany (Marburg University), Japan (National Institute for Materials Science) and the USA (Universities of Pittsburgh and Florida) that will study the structure-function relationship of the GaP/Si interface based on specific materials growth, structure characterization by electron microscopy, investigation of the interface-specific electronic structure and optical response, as well as theory. The methodology and understanding obtained through the proposed study will be applicable to similar studies of a broad range of interfaces between electronic materials.
技术摘要一项国际合作研究计划汇集了来自德国(马尔堡大学)、日本(国家材料科学研究所)和美国(匹兹堡大学和佛罗里达大学)的科学家,将研究GaP/Si掩埋界面的结构和动力学性质之间的相关性,以实现对此类材料的基本理解和实际应用。差距/Si界面是一种具有潜在应用的材料,对高效太阳能电池和硅光电子器件具有高度的可持续性影响。掩埋界面,激发态,光与非平衡电荷分布的相互作用代表了凝聚态物理实验和理论前沿的挑战。通过结合材料生长,结构表征,超快电子和声子光谱学以及理论方面的专业知识,我们的团队将研究GaP/Si界面的结构和超快光电特性之间的关系。在两种电子材料之间的界面处的光学和电荷输运性质取决于它们之间的能带对准,以及界面的原子尺度结构,这些结构以微妙的方式难以通过实验和理论来表征。我们将采用相干声子谱来研究界面电子和晶格子系统对带隙激发的超快响应。我们预计,界面载流子分布和内置的电场将大大影响耦合载流子晶格动力学。通过与组分材料(单晶Si和GaP)的动力学比较,我们将确定可归因于界面存在的超快响应的组分。将研究在不同条件下生长的材料的界面响应,这些条件影响原子到纳米尺度上的材料组成和晶体结构。从光谱测量和理论模拟中,我们将确定材料结构如何影响GaP/Si界面的光学和电子性质。材料生长和分析与超快光谱测量的紧密集成将使GaP/Si材料优化用于实际应用。实验方法将适用于广泛的技术上重要的电子材料的界面现象的研究。非技术性摘要优化的电子材料能够有效地产生和利用能源,促进经济的持续发展。差距/Si界面具有在用于太阳能到电能转换的高效太阳能电池中应用的潜力,以及用于实现基于Si的电子器件内的光信号处理的潜力。然而,这种复合材料的功能取决于它们之间的界面。尽管GaP和Si的晶格的尺寸几乎相同,使得能够在Si上生长几乎无缺陷的GaP覆盖层,但是它们不同的离子和共价特征导致界面处的电子性质突然改变。因此,复合材料的光学和电学性质强烈地依赖于界面的原子尺度结构和组成。研究界面的结构和电子性质之间的关系是非常困难的,因为它需要能够生长具有特定特性的材料,将原子结构与生长参数相关联,表征结构和电子性质之间的关系,以及开发一个理论模型,可以关闭结构和功能研究之间的反馈。我们组成了一个由来自德国(马尔堡大学)、日本(国家材料科学研究所)和美国(匹兹堡大学和佛罗里达大学)的科学家组成的合作小组,将研究基于特定材料生长、电子显微镜结构表征、界面特定电子结构和光学响应的调查以及理论差距/Si界面的结构-功能关系。通过拟议的研究获得的方法和理解将适用于电子材料之间的广泛接口的类似研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christopher Stanton其他文献

The Power (of) Lunch and the Role of Incentives for Fostering Productive Interactions
午餐的力量和促进富有成效的互动的激励作用
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Sandvik;N. Seegert;Christopher Stanton
  • 通讯作者:
    Christopher Stanton
Treatment and Selection Effects of Formal Workplace Mentorship Programs
正式职场导师计划的待遇和选择效果
  • DOI:
    10.3386/w29148
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jason Sandvik;Richard Saouma;N. Seegert;Christopher Stanton
  • 通讯作者:
    Christopher Stanton
Percutaneous Epicardial Left Atrial Appendage Closure: Intermediate‐Term Results
经皮心外膜左心耳封堵术:中期结果
  • DOI:
    10.1111/j.1540-8167.2010.01855.x
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    C. Bruce;Christopher Stanton;S. Asirvatham;Andrew J. Danielsen;Susan B. Johnson;D. Packer;P. Friedman
  • 通讯作者:
    P. Friedman
Future Developments in Nonsurgical Epicardial Therapies.
非手术心外膜治疗的未来发展。
  • DOI:
    10.1016/j.ccep.2009.11.014
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Christopher Stanton;S. Asirvatham;C. Bruce;Andrew J. Danielsen;P. Friedman
  • 通讯作者:
    P. Friedman
Who Gets Hired? The Importance of Finding an Open Slot
谁被雇用?
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    E. Lazear;K. Shaw;Christopher Stanton
  • 通讯作者:
    Christopher Stanton

Christopher Stanton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christopher Stanton', 18)}}的其他基金

Carrier, Phonon and THz Dynamics in Narrow Gap and Carbon Based Nanostructures
窄带隙和碳基纳米结构中的载流子、声子和太赫兹动力学
  • 批准号:
    1105437
  • 财政年份:
    2011
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Continuing Grant
Coherent Phonon Dynamics in Semiconductors and Nanotubes
半导体和纳米管中的相干声子动力学
  • 批准号:
    0706313
  • 财政年份:
    2007
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Continuing Grant
Collaborative ITR: Optical Control in Semiconductors for Spintronics and Quantum Information Processing
协作 ITR:用于自旋电子学和量子信息处理的半导体光控制
  • 批准号:
    0325499
  • 财政年份:
    2003
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Continuing Grant
The Ultrafast Dynamics of Coherent and Incoherent Electrons and Phonons in Condensed Matter Systems
凝聚态系统中相干和非相干电子和声子的超快动力学
  • 批准号:
    9817828
  • 财政年份:
    1999
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Continuing Grant
Ultrafast Carrier Dynamics in Metals, Superconductors, and Spin-Polarized Semiconductors
金属、超导体和自旋极化半导体中的超快载流子动力学
  • 批准号:
    9520191
  • 财政年份:
    1995
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Standard Grant
Presidential Young Investigator Award
总统青年研究员奖
  • 批准号:
    8957382
  • 财政年份:
    1989
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Continuing Grant

相似国自然基金

国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
  • 批准号:
    81942001
  • 批准年份:
    2019
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
  • 批准号:
    239013293
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
  • 批准号:
    240640164
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Research Grants
Materials World Network: Crackling Noise
材料世界网:噼啪声
  • 批准号:
    1312160
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
  • 批准号:
    1312421
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
  • 批准号:
    1312525
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
  • 批准号:
    1312697
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
  • 批准号:
    1312750
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Standard Grant
Materials World Network: Ultrafast All-Optical Switching in Ferri-/Ferromagnetic Nanomagnets
材料世界网络:铁磁/铁磁纳米磁体中的超快全光开关
  • 批准号:
    238779201
  • 财政年份:
    2013
  • 资助金额:
    $ 39.23万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了