Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
基本信息
- 批准号:1312697
- 负责人:
- 金额:$ 41.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-08-01 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
TECHNICAL SUMMARY:The formation of hierarchically organized crystalline solids through nanoparticle interaction and attachment is now recognized as a widespread phenomenon in environmental, biological and synthetic crystallization systems. The goal of this project is to develop a mechanistic understanding of how these so-called mesocrystals are created through particle-mediated growth processes. To achieve that goal, expertise in growth of mesocrystals will be combined with capabilities in high-resolution in situ transmission electron microscopy (TEM) and atomic force microscopy (AFM) imaging, dynamic force spectroscopy (DFS) of nanoparticle interactions, determination of atomic structure, and modeling and simulation from the atomic to mesoscale. Using calcium carbonate, iron oxide and calcium-silicate hydrate (SCH) combined with polymers as the experimental systems, the project will pursue three thrusts, structured around the key scientific issues. The nature of pre-nucleation clusters will be determined using ion potential measurements, titration and ultracentrifugation and their solution interaction dynamics will be probed through liquid cell TEM. The interactions responsible for particle co-orientation and reorientation will be determined through a combination of DFS and modeling. Experimental measurements will be supported by molecular modeling simulations, which will be used to determine molecular details of the effective interactions and provide parameters for phase field calculations. The kinetics of particle aggregation, crystallographic orientations of the aggregating particles, and structural evolution of mesocrystalline aggregates will be investigated by liquid cell TEM and ex situ HRTEM. Emphasis will be placed on distinguishing between oriented attachment and orientation following random aggregation either through whole-particle rotation or atomic-scale ripening. These data will be compared to phase-field models of assembly that utilize the experimentally determined interaction energies. The outcome will be a set of principles to guide synthetic strategies for creating hierarchically organized materials such as bioceramics, photonic solids, energy harvesting materials.NON-TECHNICAL SUMMARY:Through support from the NSF Division of Materials Research, a Materials World Network will be formed to investigate mechanisms by which complex crystalline structures, known as mesocrystals, are created through the interaction and attachment of nanoparticles. The goal of this research is to establish a mechanistic understanding of this process and a set of principles to guide synthetic strategies for creating hierarchically organized materials such as bioceramics, photonic solids, and energy harvesting materials. The work will be carried out by combining computer simulations and chemical analyses with a powerful set of in situ microscopy tools that provide real-time molecular-scale information about both nanoparticle attachment processes and the interaction forces between the particles. The materials to be investigated include those of relevance to biomaterials research, such as calcium carbonate, as well as those of relevance in energy and environmental systems such as iron oxide. The outcome will be a set of physical principles that can be applied both to understanding the processes responsible for formation of natural materials in the environment and to synthesis of hierarchical materials for energy, biomedical, and structural applications. Success of the project is enabled by an international collaboration between four US and German Universities, each of which brings a unique set of skills and knowledge to the project. Moreover, this collaboration will provide a unique learning experience for the graduate and undergraduate students involved in the research through international exchanges between the US and German labs. Finally, the project will include development of a module on mesocrystal formation for the public outreach programs to be made available through the NSF-funded Nanoscale Informal Science Education network.
通过纳米颗粒相互作用和附着形成分级组织的结晶固体现在被认为是环境、生物和合成结晶系统中的普遍现象。 这个项目的目标是发展一个机械的理解,这些所谓的介晶是如何通过粒子介导的生长过程。 为了实现这一目标,介晶生长的专业知识将与高分辨率原位透射电子显微镜(TEM)和原子力显微镜(AFM)成像,纳米颗粒相互作用的动态力光谱(DFS),原子结构的测定以及从原子到介观尺度的建模和模拟的能力相结合。 使用碳酸钙,氧化铁和硅酸钙水合物(SCH)与聚合物结合作为实验系统,该项目将围绕关键科学问题进行三个重点。 预成核簇的性质将使用离子电位测量,滴定和ultracenthegation和它们的溶液相互作用动力学将通过液体细胞TEM探测。 将通过DFS和建模的组合来确定负责颗粒共取向和重取向的相互作用。 实验测量将得到分子建模模拟的支持,这将用于确定有效相互作用的分子细节,并为相场计算提供参数。 颗粒聚集的动力学、聚集颗粒的结晶取向以及介晶聚集体的结构演变将通过液池TEM和非原位HRTEM进行研究。 重点将放在区分定向附着和定向后随机聚集无论是通过整个粒子旋转或原子尺度的成熟。 这些数据将进行比较,利用实验确定的相互作用能的组装相场模型。 结果将是一套原则,以指导合成策略,创造分层组织的材料,如生物陶瓷,光子固体,能量收集材料。非技术摘要:通过支持美国国家科学基金会材料研究部,材料世界网络将形成调查机制,其中复杂的晶体结构,称为介晶,通过纳米粒子的相互作用和附着创建。 这项研究的目标是建立对这一过程的机械理解和一套指导合成策略的原则,以创建分层组织的材料,如生物陶瓷,光子固体和能量收集材料。 这项工作将通过将计算机模拟和化学分析与一套强大的原位显微镜工具相结合来进行,这些工具提供了有关纳米颗粒附着过程和颗粒之间相互作用力的实时分子尺度信息。 待研究的材料包括与生物材料研究相关的材料,如碳酸钙,以及与能源和环境系统相关的材料,如氧化铁。 其结果将是一套物理原理,可用于理解环境中天然材料形成的过程,以及用于能源,生物医学和结构应用的分层材料的合成。 该项目的成功是由四所美国和德国大学之间的国际合作,其中每一个带来了一套独特的技能和知识的项目。 此外,这种合作将通过美国和德国实验室之间的国际交流,为参与研究的研究生和本科生提供独特的学习体验。 最后,该项目将包括开发一个关于介晶形成的模块,用于通过NSF资助的纳米级非正式科学教育网络提供的公共宣传计划。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jillian Banfield其他文献
Submicron-scale isotopic variations within biogenic ZnS record the mechanism and kinetics of extracellular metal-sulfide biomineralization
- DOI:
10.1016/j.gca.2006.06.861 - 发表时间:
2006-08-01 - 期刊:
- 影响因子:
- 作者:
John Moreau;Peter Weber;Michael Martin;Richard Webb;Benjamin Gilbert;Ian Hutcheon;Jillian Banfield - 通讯作者:
Jillian Banfield
Unravelling ancient microbial history with community proteogenomics and lipid geochemistry
利用群落蛋白质组学和脂质地球化学揭示古老的微生物历史
- DOI:
10.1038/nrmicro2167 - 发表时间:
2009-08-01 - 期刊:
- 影响因子:103.300
- 作者:
Jochen J. Brocks;Jillian Banfield - 通讯作者:
Jillian Banfield
A survey assessing the need for spinal chloroprocaine to provide subarachnoid neuraxial anesthesia for short-duration surgeries in Canada
- DOI:
10.1007/s12630-021-01980-w - 发表时间:
2021-04-12 - 期刊:
- 影响因子:3.300
- 作者:
Jennifer Szerb;Syed-Ali-Akbar Abbass;Jillian Banfield;Vishal Uppal - 通讯作者:
Vishal Uppal
Correction to: A survey assessing the need for spinal chloroprocaine to provide subarachnoid neuraxial anesthesia for short-duration surgeries in Canada
- DOI:
10.1007/s12630-021-02025-y - 发表时间:
2021-05-13 - 期刊:
- 影响因子:3.300
- 作者:
Jennifer Szerb;Syed-Ali-Akbar Abbass;Jillian Banfield;Vishal Uppal - 通讯作者:
Vishal Uppal
Jillian Banfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jillian Banfield', 18)}}的其他基金
Biotechnology of thiocyanate degradation: an exploration using meta-omics tools to understand the microbial communities responsible for remediation of mining wastewater
硫氰酸盐降解生物技术:利用元组学工具了解负责采矿废水修复的微生物群落的探索
- 批准号:
1349278 - 财政年份:2015
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
The mechanism of fumarate photoreduction on zinc sulfide nanoparticles
硫化锌纳米颗粒富马酸盐光还原机理
- 批准号:
1324791 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Comprehensive Genomic Analysis of Salt-impacted Microbial Communities in their Environmental Context
环境背景下受盐影响的微生物群落的综合基因组分析
- 批准号:
0626526 - 财政年份:2006
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
BE/GEN-EN: Analysis of Factors Determining the Ecological Function and Resilience of Microbial Communities
BE/GEN-EN:决定微生物群落生态功能和恢复力的因素分析
- 批准号:
0221768 - 财政年份:2002
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Microbial Observatories: Collaborative Research: A Cold Microbial Observatory: Collaborative Research in an Alaskan Boreal Forest Soil
微生物观测站:合作研究:冷微生物观测站:阿拉斯加北方森林土壤的合作研究
- 批准号:
0132115 - 财政年份:2002
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Collaborative Research: NIRT: Surface Reactivity of Nanocrystalline Oxides and Oxyhydroxides: Implications for Processes in the Environment
合作研究:NIRT:纳米晶体氧化物和羟基氧化物的表面反应性:对环境过程的影响
- 批准号:
0123967 - 财政年份:2001
- 资助金额:
$ 41.71万 - 项目类别:
Continuing Grant
Biogeochemical Weathering Controls on Soil Formation and Landscape Development
生物地球化学风化对土壤形成和景观发展的控制
- 批准号:
0106054 - 财政年份:2001
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Crystal Growth and Phase Transformation Kinetics in Nanocrystalline Materials
纳米晶材料中的晶体生长和相变动力学
- 批准号:
9814333 - 财政年份:1999
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Biogeochemical Weathering of Layer Silicates
层状硅酸盐的生物地球化学风化
- 批准号:
9706382 - 财政年份:1997
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
- 批准号:
1711849 - 财政年份:2016
- 资助金额:
$ 41.71万 - 项目类别:
Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
- 批准号:
1313544 - 财政年份:2014
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
- 批准号:
1312421 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
- 批准号:
1312525 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
- 批准号:
1312750 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
- 批准号:
1311849 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
- 批准号:
1312160 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
- 批准号:
239013293 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
- 批准号:
240640164 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Research Grants
Materials World Network: Nanostructured Materials for High-Efficiency Solar Energy Harvesting
材料世界网络:用于高效太阳能收集的纳米结构材料
- 批准号:
1311866 - 财政年份:2013
- 资助金额:
$ 41.71万 - 项目类别:
Standard Grant