Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal

材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体

基本信息

  • 批准号:
    1312697
  • 负责人:
  • 金额:
    $ 41.71万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-08-01 至 2018-07-31
  • 项目状态:
    已结题

项目摘要

TECHNICAL SUMMARY:The formation of hierarchically organized crystalline solids through nanoparticle interaction and attachment is now recognized as a widespread phenomenon in environmental, biological and synthetic crystallization systems. The goal of this project is to develop a mechanistic understanding of how these so-called mesocrystals are created through particle-mediated growth processes. To achieve that goal, expertise in growth of mesocrystals will be combined with capabilities in high-resolution in situ transmission electron microscopy (TEM) and atomic force microscopy (AFM) imaging, dynamic force spectroscopy (DFS) of nanoparticle interactions, determination of atomic structure, and modeling and simulation from the atomic to mesoscale. Using calcium carbonate, iron oxide and calcium-silicate hydrate (SCH) combined with polymers as the experimental systems, the project will pursue three thrusts, structured around the key scientific issues. The nature of pre-nucleation clusters will be determined using ion potential measurements, titration and ultracentrifugation and their solution interaction dynamics will be probed through liquid cell TEM. The interactions responsible for particle co-orientation and reorientation will be determined through a combination of DFS and modeling. Experimental measurements will be supported by molecular modeling simulations, which will be used to determine molecular details of the effective interactions and provide parameters for phase field calculations. The kinetics of particle aggregation, crystallographic orientations of the aggregating particles, and structural evolution of mesocrystalline aggregates will be investigated by liquid cell TEM and ex situ HRTEM. Emphasis will be placed on distinguishing between oriented attachment and orientation following random aggregation either through whole-particle rotation or atomic-scale ripening. These data will be compared to phase-field models of assembly that utilize the experimentally determined interaction energies. The outcome will be a set of principles to guide synthetic strategies for creating hierarchically organized materials such as bioceramics, photonic solids, energy harvesting materials.NON-TECHNICAL SUMMARY:Through support from the NSF Division of Materials Research, a Materials World Network will be formed to investigate mechanisms by which complex crystalline structures, known as mesocrystals, are created through the interaction and attachment of nanoparticles. The goal of this research is to establish a mechanistic understanding of this process and a set of principles to guide synthetic strategies for creating hierarchically organized materials such as bioceramics, photonic solids, and energy harvesting materials. The work will be carried out by combining computer simulations and chemical analyses with a powerful set of in situ microscopy tools that provide real-time molecular-scale information about both nanoparticle attachment processes and the interaction forces between the particles. The materials to be investigated include those of relevance to biomaterials research, such as calcium carbonate, as well as those of relevance in energy and environmental systems such as iron oxide. The outcome will be a set of physical principles that can be applied both to understanding the processes responsible for formation of natural materials in the environment and to synthesis of hierarchical materials for energy, biomedical, and structural applications. Success of the project is enabled by an international collaboration between four US and German Universities, each of which brings a unique set of skills and knowledge to the project. Moreover, this collaboration will provide a unique learning experience for the graduate and undergraduate students involved in the research through international exchanges between the US and German labs. Finally, the project will include development of a module on mesocrystal formation for the public outreach programs to be made available through the NSF-funded Nanoscale Informal Science Education network.
技术摘要:通过纳米颗粒相互作用和附着的层次结晶固体形成现在被认为是环境,生物学和合成结晶系统中广泛的现象。 该项目的目的是对这些所谓的中晶体如何通过粒子介导的生长过程产生这些所谓的中晶。 为了实现这一目标,在中晶增长方面的专业知识将与高分辨率的原位传输电子显微镜(TEM)和原子力显微镜(AFM)成像,纳米粒子相互作用的动态力谱(DFS)相结合,确定原子结构,模型和模拟和模拟。 将碳酸钙,氧化铁和钙硅酸盐水合物(SCH)与聚合物一起作为实验系统,该项目将追求三个推力,围绕关键科学问题构成。 将使用离子电势测量,滴定和超速离心及其溶液相互作用动力学将通过液体细胞TEM探测,将确定核前簇的性质。 负责粒子共同取向和重新定向的相互作用将通过DFS和建模的组合确定。 分子建模模拟将支持实验测量,该模拟将用于确定有效相互作用的分子细节,并为相位场计算提供参数。 颗粒聚集的动力学,聚集颗粒的晶体学方向以及中晶骨料的结构演化将由液体细胞TEM和Ex exu hRTEM研究。 将重点放在通过全粒子旋转或原子尺度成熟的随机聚集后区分定向的附着和方向。 这些数据将与利用实验确定的相互作用能的组装相位模型进行比较。 结果将是一组原则,用于指导合成策略,以创建层次有组织的材料,例如生物陶瓷,光子固体,能量收集材料。没有技术摘要:通过NSF材料研究部的支持,将形成一个材料世界网络,以研究复杂的晶体结构(已知的复杂的晶体结构),并创建了nescocryst群体,并通过互动,并通过互动而创建。 这项研究的目的是建立对这一过程的机械理解,以及一套指导合成策略,以创建层次结构化的材料,例如生物陶瓷,光子固体和能源收集材料。 这项工作将通过将计算机模拟和化学分析与强大的原位显微镜工具相结合,从而提供有关纳米颗粒附着过程和颗粒之间的相互作用力的实时分子规模的信息。 要研究的材料包括与生物材料研究相关的材料,例如碳酸钙,以及与氧化铁等能量和环境系统相关的材料。 结果将是一组物理原则,可以应用于理解负责在环境中形成天然材料的过程,并综合用于能源,生物医学和结构应用的层次材料。 该项目的成功是通过四所美国和德国大学之间的国际合作来实现的,每个大学都为项目带来了一套独特的技能和知识。 此外,这项合作将通过美国和德国实验室之间的国际交流为参与研究的研究生和本科生提供独特的学习经验。 最后,该项目将包括开发用于中晶形成的模块,以通过NSF资助的纳米级非正式科学教育网络提供公共外展计划。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jillian Banfield其他文献

Submicron-scale isotopic variations within biogenic ZnS record the mechanism and kinetics of extracellular metal-sulfide biomineralization
  • DOI:
    10.1016/j.gca.2006.06.861
  • 发表时间:
    2006-08-01
  • 期刊:
  • 影响因子:
  • 作者:
    John Moreau;Peter Weber;Michael Martin;Richard Webb;Benjamin Gilbert;Ian Hutcheon;Jillian Banfield
  • 通讯作者:
    Jillian Banfield

Jillian Banfield的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jillian Banfield', 18)}}的其他基金

Biotechnology of thiocyanate degradation: an exploration using meta-omics tools to understand the microbial communities responsible for remediation of mining wastewater
硫氰酸盐降解生物技术:利用元组学工具了解负责采矿废水修复的微生物群落的探索
  • 批准号:
    1349278
  • 财政年份:
    2015
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
The mechanism of fumarate photoreduction on zinc sulfide nanoparticles
硫化锌纳米颗粒富马酸盐光还原机理
  • 批准号:
    1324791
  • 财政年份:
    2013
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
Comprehensive Genomic Analysis of Salt-impacted Microbial Communities in their Environmental Context
环境背景下受盐影响的微生物群落的综合基因组分析
  • 批准号:
    0626526
  • 财政年份:
    2006
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
BE/GEN-EN: Analysis of Factors Determining the Ecological Function and Resilience of Microbial Communities
BE/GEN-EN:决定微生物群落生态功能和恢复力的因素分析
  • 批准号:
    0221768
  • 财政年份:
    2002
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
Microbial Observatories: Collaborative Research: A Cold Microbial Observatory: Collaborative Research in an Alaskan Boreal Forest Soil
微生物观测站:合作研究:冷微生物观测站:阿拉斯加北方森林土壤的合作研究
  • 批准号:
    0132115
  • 财政年份:
    2002
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
Collaborative Research: NIRT: Surface Reactivity of Nanocrystalline Oxides and Oxyhydroxides: Implications for Processes in the Environment
合作研究:NIRT:纳米晶体氧化物和羟基氧化物的表面反应性:对环境过程的影响
  • 批准号:
    0123967
  • 财政年份:
    2001
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Continuing Grant
Biogeochemical Weathering Controls on Soil Formation and Landscape Development
生物地球化学风化对土壤形成和景观发展的控制
  • 批准号:
    0106054
  • 财政年份:
    2001
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
Crystal Growth and Phase Transformation Kinetics in Nanocrystalline Materials
纳米晶材料中的晶体生长和相变动力学
  • 批准号:
    9814333
  • 财政年份:
    1999
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
LExEN: Life in Acid
LExEN:酸中的生活
  • 批准号:
    9978205
  • 财政年份:
    1999
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
Biogeochemical Weathering of Layer Silicates
层状硅酸盐的生物地球化学风化
  • 批准号:
    9706382
  • 财政年份:
    1997
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant

相似国自然基金

基于真实世界数据的糖尿病共病网络演化和预测
  • 批准号:
    62302065
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
应用于开放世界物体识别的检索增强视觉网络
  • 批准号:
    62376134
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
小世界分层RF/FSO Mesh网络构建与优化
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
小世界分层RF/FSO Mesh网络构建与优化
  • 批准号:
    62201180
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
Lévy噪声激励和小世界网络结构下的神经系统的奇异态
  • 批准号:
    12202332
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10664959
  • 财政年份:
    2021
  • 资助金额:
    $ 41.71万
  • 项目类别:
FAMILY WELL-BEING RESEARCH NETWORK (“FAM-NET”): Measuring Family Well-Being across the Lifespan
家庭福祉研究网络 (“FAM-NET”):衡量整个生命周期的家庭福祉
  • 批准号:
    10437604
  • 财政年份:
    2021
  • 资助金额:
    $ 41.71万
  • 项目类别:
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
  • 批准号:
    239013293
  • 财政年份:
    2013
  • 资助金额:
    $ 41.71万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了