Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)

材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)

基本信息

  • 批准号:
    1312525
  • 负责人:
  • 金额:
    $ 40.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

Technical SummaryThis US/France collaborative project funded by the Division of Materials Research will focus on fundamental studies of a novel class of sustainable reactive composite nanolaminates containing a metal (commonly aluminum) and metal oxide (commonly copper oxide, iron(III) oxide, and zinc oxide). The materials attracted great interest in the energetic material community since they are characterized by a high energy and power density (superior to supercapacitors), and are low cost and safe, useful for micro-thermal sources, micro-actuators and enablers for environmentally clean primers, miniature safe detonators, in-situ welding and soldering, and also chemical neutralization agents. Yet, interfaces play a critical role during the synthesis and the utilization of these reactive layered nanostructures. The formation of interfacial layers is not only poorly understood but uncontrolled at present. A fundamental understanding of the formation and role of these aluminum/metal-oxide interfacial layers would not only bring control of such systems, but also be transformative for fundamental and practical advances in this field. This project aims at developing an atomic-level understanding of the interface formation process between Aluminum/Metal-oxide by combining in-situ spectroscopy and imaging with Density Functional Theory calculations for a variety of deposition methods. To this end, model surfaces and atomically precise deposition methods (e.g. atomic layer deposition) will be used to derive detailed atomic information, in combination with nanopatterning processes to quantify the contribution of the interfacial layers for both the reaction kinetics and the stability at low temperatures. Deposition/synthesis issues specifically associated with highly reactive materials are unraveled by the development of novel theoretical methods coupled with extensive and unique in situ characterization methods. Thermal characterization techniques combustion tests combined with high resolution imaging and x-ray diffraction will be used to quantitatively evaluate the role of such interfaces in operating conditions. This project constitutes a first step in understanding the role of interfaces in reactive hetero-structures. Aluminum, copper, iron and zinc are all widely available and recyclable resources and common materials in microelectronics. These Aluminum/metal oxide nanolaminates are therefore sustainable, totally safe and not toxic for the environment and human health, requiring no hazardous substances and releasing no pollutant chemicals for their productions. The social, environmental and economic benefits are clear since these nanomaterials and nanostructures will contribute to reducing the use of many dangerous and polluting energetic materials (containing lead salt for example or synthesized using polluting chemistry). NON-TECHNICAL SUMMARY:Reactive materials are critical for defense and energy. Ultra-thin layers of reactive materials, called reactive composite nanolaminates (e.g. aluminum and copper oxide), have attracted great interest in the energetic material community since they are characterized by a high energy and power density and are low cost and safe, useful for miniature thermal sources, actuators, detonators, and chemical neutralization agents. Most investigations have focused on the relationship between the structure and thermal properties of these reactive and metastable nanolaminates. Yet, interfaces play a critical role during their synthesis and utilization. The nature of interfaces is not only poorly understood but uncontrolled at present. A fundamental understanding of the formation and role of these interfacial layers would not only bring control of such systems, but also be transformative for fundamental and practical advances in energy and defense fields. By combining growth, characterization and theoretical studies, this project provides the foundation towards the design of future tailored reactive nanostructures by interface optimization using atomically precise technologies. It establishes a bridge between the fields of reactive materials and solid state and material chemistry. It provides a multidisciplinary environment for the students, besides the benefits of cultural exchange. There is a focused integration of the research topic into educational programs (graduate courses, tutorials, certificates) both in the US and in France. At UT Dallas, this project engages underrepresented minority and women graduate students, and is a backbone for targeted outreach within the greater Dallas area. It supports existing programs developed by the UT Dallas Office of Diversity and Community Engagement, and programs to mentor and engage undergraduates in research such as the Academic Bridge and the Louis Stokes Alliances for Minority Participation programs.
这个由材料研究部资助的美国/法国合作项目将专注于一类新型的可持续反应性纳米层酸盐的基础研究,该纳米层酸盐含有金属(通常是铝)和金属氧化物(通常是铜氧化物、铁(III)氧化物和氧化锌)。这些材料由于具有高能量和功率密度(优于超级电容器)、低成本和安全,可用于微热源、微执行器和环境清洁雷管、微型安全雷管、现场焊接和焊接以及化学中和剂等特点,引起了高能材料界的极大兴趣。然而,界面在这些反应性层状纳米结构的合成和利用过程中起着至关重要的作用。界面层的形成目前不仅知之甚少,而且还没有得到控制。从根本上理解这些铝/金属-氧化物界面层的形成和作用,不仅有助于控制这类体系,而且对这一领域的基础和实际进展也具有变革性意义。该项目旨在通过将原位光谱和成像与各种沉积方法的密度泛函理论计算相结合,从原子水平上理解铝/金属氧化物之间的界面形成过程。为此,将使用模型表面和原子精密沉积方法(例如原子层沉积)来获得详细的原子信息,并结合纳米刻蚀过程来量化界面层对低温下反应动力学和稳定性的贡献。新的理论方法和广泛而独特的原位表征方法的发展揭开了与高活性材料相关的沉积/合成问题的面纱。将使用热表征技术、燃烧试验以及高分辨率成像和X射线衍射来定量评估这些界面在运行条件下的作用。这个项目是理解界面在反应性异质结构中的作用的第一步。铝、铜、铁、锌都是微电子中广泛可得、可回收利用的资源和常用材料。因此,这些铝/金属氧化物纳米层酸盐是可持续的、完全安全的,对环境和人类健康无毒,不需要任何有害物质,生产过程中不会释放任何污染物。社会、环境和经济效益是显而易见的,因为这些纳米材料和纳米结构将有助于减少许多危险和污染的高能材料(例如含有铅盐或使用污染化学合成的材料)的使用。非技术综述:反应材料对国防和能源至关重要。超薄层反应性材料,称为反应性复合纳米层状物(如铝和氧化铜),由于具有高能量密度和高功率密度的特点,以及低成本和安全,可用于微型热源、致动器、雷管和化学中和剂,因此在含能材料领域引起了极大的兴趣。大多数研究都集中在这些反应性和亚稳态纳米层状物的结构和热性能之间的关系上。然而,界面在它们的合成和利用过程中起着至关重要的作用。目前,人们不仅对界面的性质知之甚少,而且还无法控制。对这些界面层的形成和作用的基本了解不仅将带来对此类系统的控制,而且将对能源和国防领域的基础和实际进展产生革命性影响。通过将生长、表征和理论研究相结合,该项目为使用原子精密技术通过界面优化设计未来量身定制的反应性纳米结构提供了基础。它在反应材料、固体和材料化学领域之间架起了一座桥梁。除了文化交流的好处外,它还为学生提供了一个多学科的环境。在美国和法国,将研究课题集中整合到教育项目(研究生课程、教程、证书)中。在德克萨斯大学达拉斯分校,这个项目吸引了少数族裔和女性研究生,是在大达拉斯地区进行有针对性推广的中坚力量。它支持德克萨斯大学达拉斯分校多样性和社区参与办公室制定的现有项目,以及指导和吸引本科生参与研究的项目,如学术桥梁和路易斯·斯托克斯少数群体参与联盟项目。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yves Chabal其他文献

Yves Chabal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yves Chabal', 18)}}的其他基金

Role of structure in chemical functionalization of oxide-free silicon surfaces and nanoparticles
结构在无氧化物硅表面和纳米粒子化学功能化中的作用
  • 批准号:
    1300180
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
AIR Option 1: Tech Translation - Ultrananocrystalline Diamond Coating Tech for Integrated Electrode-Membrane-Inner Wall Case Coating for Long Life Commercial Li-Sulfur Battery
AIR选项1:技术翻译-用于长寿命商用锂硫电池的集成电极-膜-内壁外壳涂层的超纳米晶金刚石涂层技术
  • 批准号:
    1343461
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Surface Chemical Functionalization of Semiconductors and Nanostructures
半导体和纳米结构的表面化学功能化
  • 批准号:
    0911197
  • 财政年份:
    2009
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Surface Chemical Functionalization of Technologically Important Semiconductors: Silicon, Germanium, and Silicon Carbide
具有重要技术意义的半导体的表面化学功能化:硅、锗和碳化硅
  • 批准号:
    0827634
  • 财政年份:
    2008
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Continuing Grant
MRI: Development of an Integrated Thin Film Growth System with Comprehensive In-situ Characterization for Research and Education
MRI:开发具有综合原位表征的集成薄膜生长系统,用于研究和教育
  • 批准号:
    0421028
  • 财政年份:
    2004
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Surface Chemical Functionalization of Technologically Important Semiconductors: Silicon, Germanium, and Silicon Carbide
具有重要技术意义的半导体的表面化学功能化:硅、锗和碳化硅
  • 批准号:
    0415652
  • 财政年份:
    2004
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Continuing Grant
US-France Cooperative Research: Molecule/Surface Interaction and the Formation of Ultra-Thin Layers During High-k Dielectric Growth on Silicon
美法合作研究:硅上高 k 电介质生长过程中的分子/表面相互作用和超薄层的形成
  • 批准号:
    0341053
  • 财政年份:
    2004
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant

相似国自然基金

国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
  • 批准号:
    81942001
  • 批准年份:
    2019
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目

相似海外基金

Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
  • 批准号:
    1711849
  • 财政年份:
    2016
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
  • 批准号:
    1313544
  • 财政年份:
    2014
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
  • 批准号:
    239013293
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
  • 批准号:
    240640164
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Research Grants
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
  • 批准号:
    1311849
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
  • 批准号:
    1312160
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
  • 批准号:
    1312421
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
  • 批准号:
    1312697
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
  • 批准号:
    1312750
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Standard Grant
Materials World Network: Ultrafast All-Optical Switching in Ferri-/Ferromagnetic Nanomagnets
材料世界网络:铁磁/铁磁纳米磁体中的超快全光开关
  • 批准号:
    238779201
  • 财政年份:
    2013
  • 资助金额:
    $ 40.6万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了