Materials World Network: Investigations of Quantum Fluctuation Relations Using Superconducting Qubits
材料世界网络:利用超导量子位研究量子涨落关系
基本信息
- 批准号:1312421
- 负责人:
- 金额:$ 26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-15 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Technical AbstractIn the last two decades, the development of nonequilibrium work fluctuation theorems has yielded new tools for the estimation of free energy differences in molecular systems, shed light on how microscopic systems exchange energy with their environment, and provided a deeper understanding of the nature of the second law of thermodynamics. However, while relations like the Jarzynski equality have been verified experimentally in the classical limit, they remain to be tested in the quantum regime. The experiments conducted in this project, which is supported by an award from the Division of Materials Research's Materials World Network, will utilize state-of-the-art superconducting microwave resonators and superconducting qubits to perform the first systematic investigations of fluctuation theorems in the quantum regime. The project will also provide the first experiments to probe the quantum mechanical nature of work, which has only recently been elucidated theoretically. Moreover, through close collaboration with theorists from the University of Campinas (Campinas, Brazil) and The Sao Carlos Institute of Physics (Sao Carlos, Brazil), it will provide fundamental insight into the nature of dissipation at the nanoscale and the modeling of open quantum systems, most notably in application to nonequilibrium fluctuation theorems, which remains an open theoretical question. This research will support the training of one graduate student and one postdoc in cutting-edge technologies for exploring quantum physics at the nanoscale, including fabrication techniques and low-noise measurement of superconducting devices at ultra-low temperatures; it will provide training to students in advanced theoretical techniques in quantum mechanics and statistical mechanics, including the modeling of open quantum systems and nonequilibrium fluctuation theorems; and it will foster an international collaboration, consisting not only of direct collaborative research but also research student exchange and development of topical, student-oriented research tutorials.Non-Technical AbstractIn the last two decades, important advances have been made in our understanding of how systems at the micro and nanoscale exchange energy with the environment in which they are inevitably embedded. At the forefront of these advances has been the development of a new series of precise mathematical relationships between certain thermodynamic quantities - e.g. between the work that can be extracted from a system and the energy of the same system. These developments are important both from a fundamental perspective and an applied one. For example, these relations have refined our understanding of the second law of thermodynamics and irreversibility (i.e. the arrow of time); at the same time, they have provided greater insight into the limitations placed on the efficiency of machines at the smallest scale, a question of paramount importance as technology continues to be scaled down in size. Crucially, while these new relationships have been tested and utilized in a wide range of classical micro and nanoscale systems, their experimental verification in quantum systems remains an open challenge. The experiments conducted in this international collaborative project will utilize state-of-the-art superconducting circuitry to perform the first systematic investigations to meet this challenge. The broader impacts of this work are multifold: the research will provide fundamental insight into the nature of work and energy dissipation in quantum systems, which is of direct importance for understanding the potential of burgeoning quantum and hybrid-quantum technologies - such as quantum-assisted sensing and quantum information; it will support the training and education of one graduate student and one postdoc in cutting-edge techniques and topics in quantum nanoscale physics; and it will foster an international collaboration that promotes research student exchange and the general education of students in these advanced, contemporary topics.
技术摘要在过去的二十年中,非平衡功涨落定理的发展产生了新的工具,用于估计分子系统中的自由能差,揭示了微观系统如何与环境交换能量,并提供了更深入的理解热力学第二定律的性质。然而,虽然像Jarzynski等式这样的关系已经在经典极限下得到了实验验证,但它们仍然需要在量子范围内进行测试。在该项目中进行的实验得到了材料研究部材料世界网络的支持,将利用最先进的超导微波谐振器和超导量子位对量子体系中的波动定理进行首次系统研究。该项目还将提供第一个实验来探索工作的量子力学性质,这一性质直到最近才在理论上得到阐明。此外,通过与坎皮纳斯大学(巴西坎皮纳斯)和圣卡洛斯物理研究所(巴西圣卡洛斯)的理论家密切合作,它将提供对纳米级耗散性质和开放量子系统建模的基本见解,最值得注意的是应用于非平衡波动定理,这仍然是一个开放的理论问题。这项研究将支持对一名研究生和一名博士后进行尖端技术方面的培训,以探索纳米尺度的量子物理学,包括超低温超导装置的制造技术和低噪声测量;它将为学生提供量子力学和统计力学方面的先进理论技术方面的培训,包括开放量子系统建模和非平衡波动定理;它将促进国际合作,不仅包括直接的合作研究,但也研究学生交流和专题,以学生为导向的研究tutorials.Non-Technical Abstract在过去的二十年中,重要的进展已经取得了我们的理解如何系统在微和纳米交换能量与环境中,他们是不可避免地嵌入。在这些进展的最前沿,是在某些热力学量之间发展了一系列新的精确数学关系,例如,在从一个系统中提取的功和同一系统的能量之间。这些发展无论从基本的角度还是从应用的角度来看都是重要的。例如,这些关系使我们更好地理解热力学第二定律和不可逆性(即时间之箭);与此同时,它们使我们更深入地了解了最小规模机器效率的限制,随着技术不断缩小规模,这是一个至关重要的问题。至关重要的是,虽然这些新的关系已经在广泛的经典微米和纳米尺度系统中进行了测试和利用,但它们在量子系统中的实验验证仍然是一个开放的挑战。 在这个国际合作项目中进行的实验将利用最先进的超导电路进行首次系统研究,以应对这一挑战。 这项工作的更广泛影响是多方面的:研究将提供对量子系统中工作和能量耗散性质的基本见解,这对于理解新兴量子和混合量子技术的潜力具有直接重要性-例如量子辅助传感和量子信息;它将支持对一名研究生和一名博士后进行量子纳米级物理学前沿技术和专题的培训和教育;它将促进国际合作,促进研究生交流和学生在这些先进的,当代的主题的一般教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew LaHaye其他文献
Matthew LaHaye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew LaHaye', 18)}}的其他基金
CAREER: Probing Quantum Behavior in Qubit-Coupled Nanomechanical Systems
职业:探测量子位耦合纳米机械系统中的量子行为
- 批准号:
1056423 - 财政年份:2011
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
相似国自然基金
国际心脏研究会第二十三届世界大会(XXIII World Congress ISHR)
- 批准号:81942001
- 批准年份:2019
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Materials World Network: Collaborative Proposal: Understanding the Optical Response of Designer Epsilon Near Zero Materials
材料世界网络:协作提案:了解设计师 Epsilon 近零材料的光学响应
- 批准号:
1711849 - 财政年份:2016
- 资助金额:
$ 26万 - 项目类别:
Continuing Grant
Materials World Network, SusChEM: Hybrid Sol-Gel Route to Chromate-free Anticorrosive Coatings
材料世界网络,SusChEM:混合溶胶-凝胶路线制备无铬酸盐防腐涂料
- 批准号:
1313544 - 财政年份:2014
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Materials World Network: Development of high-efficiency photovoltaic devices for optimal performance under a broad range of spectral illumination conditions
材料世界网络:开发高效光伏器件,在广泛的光谱照明条件下实现最佳性能
- 批准号:
239013293 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Research Grants
Materials World Network: Electron-lattice dynamics at an atomically controlled buried interface
材料世界网络:原子控制掩埋界面的电子晶格动力学
- 批准号:
240640164 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Research Grants
Materials World Network, SusChEM: Collaborative Electron-lattice Dynamics at an Atomically Controlled Buried Interface
材料世界网络,SusChEM:原子控制掩埋界面的协同电子晶格动力学
- 批准号:
1311849 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Materials World Network: Crackling Noise
材料世界网:噼啪声
- 批准号:
1312160 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Materials World Network, SusChEM: Control of Interfacial Chemistry in Reactive Nanolaminates (CIREN)
材料世界网络,SusChEM:反应性纳米层压材料中界面化学的控制(CIREN)
- 批准号:
1312525 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Materials World Network: Particle-Mediated Control Over Crystallization: From the Pre-Nucleation Stage to the Final Crystal
材料世界网络:粒子介导的结晶控制:从预成核阶段到最终晶体
- 批准号:
1312697 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Materials World Network: New Functionality in Complex Magnetic Structures with Perpendicular Anisotropy
材料世界网络:具有垂直各向异性的复杂磁结构的新功能
- 批准号:
1312750 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Standard Grant
Materials World Network: Ultrafast All-Optical Switching in Ferri-/Ferromagnetic Nanomagnets
材料世界网络:铁磁/铁磁纳米磁体中的超快全光开关
- 批准号:
238779201 - 财政年份:2013
- 资助金额:
$ 26万 - 项目类别:
Research Grants