Fully Nonlinear Elliptic Equations and Related Geometric Problems
完全非线性椭圆方程及相关几何问题
基本信息
- 批准号:1313218
- 负责人:
- 金额:$ 20.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-07-01 至 2017-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This proposal concerns fully nonlinear elliptic equations that arise from or have strong connections with problems in geometry. It focuses on three topics: estimates for fully nonlinear elliptic equations on real or complex manifolds; asymptotic Plateau problems in hyperbolic space; and questions on regularity and weak solutions of the complex Monge-Ampere equation. These topics are all closely related, with the strong common feature that most of the major questions are centred at or reduce to establishing certain a priori estimates for solutions of some fully nonlinear partial differential equations. Yet each of these questions presents unique technical challenges.Fully nonlinear elliptic equations play key roles in understanding difficult problems in mathematics, and have important applications such as in image processing, optical reflector designs, optimal mass transport, and mathematical physics. A central issue in order to solve a fully nonlinear second order equation is to establish a priori estimates for perspective solutions. Our goal is to search for techniques to derive such estimates under conditions which are close to optimal for general elliptic (but not assumed uniformly elliptic) equations on real or complex manifolds. Breakthroughs in this direction would have broad impacts to the whole field of fully nonlinear PDEs and their applications.
该提案涉及由几何问题产生或与几何问题有密切联系的完全非线性椭圆方程。它重点关注三个主题:实数或复流形上完全非线性椭圆方程的估计;双曲空间中的渐近高原问题;以及关于复杂 Monge-Ampere 方程的正则性和弱解的问题。这些主题都密切相关,具有很强的共同特征,即大多数主要问题都集中于或简化为某些完全非线性偏微分方程的解建立某些先验估计。然而,这些问题中的每一个都提出了独特的技术挑战。完全非线性椭圆方程在理解数学难题中发挥着关键作用,并且在图像处理、光学反射器设计、最优质量传输和数学物理等领域具有重要的应用。求解完全非线性二阶方程的一个中心问题是建立透视解的先验估计。我们的目标是寻找在接近实数或复流形上的一般椭圆(但不假设均匀椭圆)方程的最佳条件下导出此类估计的技术。这个方向的突破将对全非线性偏微分方程及其应用的整个领域产生广泛的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Guan其他文献
Distribution and Influencing Factors of Metals in Surface Soil from the Yellow River Delta, China
黄河三角洲表层土壤金属元素分布及影响因素
- DOI:
10.3390/land11040523 - 发表时间:
2022-04 - 期刊:
- 影响因子:3.9
- 作者:
Yang Yu;Yue Ling;Yunzhao Li;Zhenbo Lv;Zhaohong Du;Bo Guan;Zhikang Wang;Xuehong Wang;Jisong Yang;Junbao Yu - 通讯作者:
Junbao Yu
SECOND-ORDER ESTIMATES AND REGULARITY FOR FULLY NONLINEAR ELLIPTIC EQUATIONS ON RIEMANNIAN MANIFOLDS
- DOI:
10.1215/00127094-2713591 - 发表时间:
2012-11 - 期刊:
- 影响因子:2.5
- 作者:
Bo Guan - 通讯作者:
Bo Guan
MEAN CURVATURE MOTION OF NON-PARAMETRIC HYPERSURFACES WITH CONTACT ANGLE CONDITION
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Bo Guan - 通讯作者:
Bo Guan
Single‐cell transcriptomic analysis in clear cell renal cell carcinoma: Deciphering the role of APP within the tumour microenvironment
透明细胞肾细胞癌的单细胞转录组分析:解读 APP 在肿瘤微环境中的作用
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:5.3
- 作者:
Bo Guan;Ming Li;Di Cui;Chen Shen;Zongyao Hao;Xiaowei Li - 通讯作者:
Xiaowei Li
New mechanistic insight into the oxygen reduction reaction on Ruddlesden-Popper cathodes for intermediate-temperature solid oxide fuel cells.
对中温固体氧化物燃料电池 Ruddlesden-Popper 阴极上氧还原反应的新机理见解。
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Wenyuan Li;Bo Guan;Xinxin Zhang;Jianhua Yan;Yue Zhou;Xingbo Liu - 通讯作者:
Xingbo Liu
Bo Guan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Guan', 18)}}的其他基金
Fully nonlinear elliptic equations in geometry
几何中的完全非线性椭圆方程
- 批准号:
1620086 - 财政年份:2016
- 资助金额:
$ 20.91万 - 项目类别:
Continuing Grant
Fully nonlinear partial differential equations and related problems in geometry
全非线性偏微分方程及几何中的相关问题
- 批准号:
0805899 - 财政年份:2008
- 资助金额:
$ 20.91万 - 项目类别:
Standard Grant
Fully Nonlinear Partial Differential Equations in Geometry
几何中的完全非线性偏微分方程
- 批准号:
0505632 - 财政年份:2005
- 资助金额:
$ 20.91万 - 项目类别:
Standard Grant
Fully Nonlinear Elliptic and Parabolic Equations in Differential Geometry
微分几何中的完全非线性椭圆方程和抛物线方程
- 批准号:
0204590 - 财政年份:2002
- 资助金额:
$ 20.91万 - 项目类别:
Standard Grant
Mathematical Sciences: Monge-Ampere Type Equations and Related Problems in Differential Geometry
数学科学:蒙日-安培型方程及微分几何中的相关问题
- 批准号:
9626722 - 财政年份:1996
- 资助金额:
$ 20.91万 - 项目类别:
Standard Grant
相似海外基金
Fully Nonlinear Elliptic and Parabolic Equations
完全非线性椭圆和抛物线方程
- 批准号:
1800495 - 财政年份:2018
- 资助金额:
$ 20.91万 - 项目类别:
Continuing Grant
Variational theory for fully nonlinear elliptic equations
全非线性椭圆方程的变分理论
- 批准号:
DP170100929 - 财政年份:2017
- 资助金额:
$ 20.91万 - 项目类别:
Discovery Projects
Fully nonlinear elliptic equations in geometry
几何中的完全非线性椭圆方程
- 批准号:
1620086 - 财政年份:2016
- 资助金额:
$ 20.91万 - 项目类别:
Continuing Grant
Geometric Analysis in Conformal Geometry and Fully Nonlinear Elliptic Partial Differential Equations
共形几何和全非线性椭圆偏微分方程中的几何分析
- 批准号:
1612015 - 财政年份:2016
- 资助金额:
$ 20.91万 - 项目类别:
Standard Grant
Novel numerical methods for fully nonlinear second order elliptic and parabolic Monge-Ampere and Hamilton-Jacobi-Bellman equations
全非线性二阶椭圆和抛物线 Monge-Ampere 和 Hamilton-Jacobi-Bellman 方程的新颖数值方法
- 批准号:
1620168 - 财政年份:2016
- 资助金额:
$ 20.91万 - 项目类别:
Continuing Grant
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
- 批准号:
1547878 - 财政年份:2014
- 资助金额:
$ 20.91万 - 项目类别:
Standard Grant
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2013
- 资助金额:
$ 20.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements
Geometric Inequalities and Fully Nonlinear Elliptic Equations
几何不等式和完全非线性椭圆方程
- 批准号:
1205350 - 财政年份:2012
- 资助金额:
$ 20.91万 - 项目类别:
Standard Grant
Numerical methods for fully nonlinear and degenerate elliptic partial differential equations
全非线性和简并椭圆偏微分方程的数值方法
- 批准号:
411943-2011 - 财政年份:2012
- 资助金额:
$ 20.91万 - 项目类别:
Discovery Grants Program - Accelerator Supplements














{{item.name}}会员




