Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning

合作研究:CDS

基本信息

  • 批准号:
    1317424
  • 负责人:
  • 金额:
    $ 13.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2017-08-31
  • 项目状态:
    已结题

项目摘要

The objective of this proposal is to develop robust algorithms for reconstructing or synthesizing highly structured high-dimensional data based on a low-dimensional representation learned from a training dataset, i.e., the interpolation and extrapolation problems in manifold learning. The project will address the elusive issue of computing a usually not well-defined low-dimensional parametrization in the setting of various interpolation and extrapolation problems for manifold learning, emphasizing the notion of physically meaningful paramterizations. It will develop innovative computational methodology for flexibly learning a low-dimensional parametrization together with other physically important variables in the context of both unsupervised and semi-supervised learning and especially active learning settings, for learning and synthesis of dynamic data, and for manifold extrapolation based on transfer learning. Included in the project is a development of a publicly available software package which will disseminate the research results and promote applications of nonlinear dimension reduction methodology to real-world problems.The discoveries from this proposed research are expected to impact a wide range of areas of applications. Computing compact representation of high-dimensional data represents a very challenging statistical learning problem, and manifold learning has become a very active research field aiming at discovering hidden structures from the statistical and geometric regularity inherent in many high-dimensional data. Reconstruction and synthesis of high-dimensional data in the context of interpolation and extrapolation will have significant applications in image and video processing, computer vision, video surveillance for homeland security, computational biology, and scientific visualization. The proposed theoretical tools and computational methods have the promise of significantly expanding the applicability and functionality of existing and new manifold learning methods and thus advancing the state of the art in nonlinear dimension reduction research. The proposed research lies at the interface between applied mathematics, computational science, and machine learning applications and provides an ideal setting for research cross-fertilization and collaboration as well as training of graduate students in interdisciplinary research.
该提议的目的是开发用于基于从训练数据集学习的低维表示来重建或合成高度结构化的高维数据的鲁棒算法,即,流形学习中的内插和外推问题。该项目将解决在流形学习的各种内插和外推问题的设置中计算通常定义不明确的低维参数化的难以捉摸的问题,强调物理意义参数化的概念。它将开发创新的计算方法,用于在无监督和半监督学习以及特别是主动学习设置的背景下灵活地学习低维参数化以及其他物理上重要的变量,用于动态数据的学习和合成,以及基于迁移学习的流形外推。该项目包括开发一个可公开获得的软件包,该软件包将传播研究成果,并促进非线性降维方法在现实世界问题中的应用。预计这项拟议研究的发现将影响广泛的应用领域。计算高维数据的紧凑表示是一个非常具有挑战性的统计学习问题,流形学习已经成为一个非常活跃的研究领域,旨在从许多高维数据固有的统计和几何规律中发现隐藏的结构。在内插和外推的背景下重建和合成高维数据将在图像和视频处理、计算机视觉、国土安全视频监控、计算生物学和科学可视化中具有重要应用。所提出的理论工具和计算方法有希望显着扩展现有的和新的流形学习方法的适用性和功能,从而推进非线性降维研究的最新技术水平。拟议的研究位于应用数学,计算科学和机器学习应用之间的接口,并为研究交叉施肥和合作以及跨学科研究的研究生培训提供了理想的环境。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiang Ye其他文献

Game-Theoretic Optimization for Machine-Type Communications Under QoS Guarantee
QoS保证下机器类通信的博弈论优化
  • DOI:
    10.1109/jiot.2018.2856898
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Yu Gu;Qimei Cui;Qiang Ye;Weihua Zhuang
  • 通讯作者:
    Weihua Zhuang
Determinants of hotel room price An exploration of travelers'; hierarchy of accommodation needs
酒店房价的决定因素对旅行者的探索;
Biological Characterization of a Novel, Orally Active Small Molecule Gonadotropin-Releasing Hormone (GnRH) Antagonist Using Castrated and Intact Rats
使用去势和完整大鼠对新型口服活性小分子促性腺激素释放激素 (GnRH) 拮抗剂进行生物学表征
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    K. Anderes;D. Luthin;R. Castillo;E. Kraynov;Mary A Castro;K. Nared;Margaret L. Gregory;V. Pathak;L. Christie;G. Paderes;H. Vazir;Qiang Ye;Mark B. Anderson;J. May
  • 通讯作者:
    J. May
Force Perception Instrument for Robotic Flexible Micro-Catheter Delivery in Glaucoma Surgery
用于青光眼手术中机器人柔性微导管输送的力感知仪器
Transport-Layer Protocol Customization for 5G Core Networks
5G核心网传输层协议定制
  • DOI:
    10.1007/978-3-030-88666-0_4
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Qiang Ye;W. Zhuang
  • 通讯作者:
    W. Zhuang

Qiang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiang Ye', 18)}}的其他基金

RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
  • 批准号:
    2208314
  • 财政年份:
    2022
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CDS&E: Efficient and Robust Recurrent Neural Networks
CDS
  • 批准号:
    1821144
  • 财政年份:
    2018
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Accurate Preconditioing for Computing Eigenvalues of Large and Extremely Ill-conditioned Matrices
用于计算大型和极病态矩阵特征值的精确预处理
  • 批准号:
    1620082
  • 财政年份:
    2016
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant
Accurate and Efficient Algorithms for Computing Exponentials of Large Matrices with Applications
准确高效的大型矩阵指数计算算法及其应用
  • 批准号:
    1318633
  • 财政年份:
    2013
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
High Relative Accuracy Iterative Algorithms for Large Scale Matrix Eigenvalue Problems with Applications
大规模矩阵特征值问题的高相对精度迭代算法及其应用
  • 批准号:
    0915062
  • 财政年份:
    2009
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Computing Interior Eigenvalues of Large Matrices by Preconditioned Krylov Subspace Methods
用预处理 Krylov 子空间方法计算大矩阵的内部特征值
  • 批准号:
    0411502
  • 财政年份:
    2004
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Preconditioned Krylov Subspace Algorithms for Computing Eigenvalues of Large Matrices
用于计算大矩阵特征值的预处理 Krylov 子空间算法
  • 批准号:
    0098133
  • 财政年份:
    2001
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Continuing Grant

相似国自然基金

Research on Quantum Field Theory without a Lagrangian Description
  • 批准号:
    24ZR1403900
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
Cell Research
  • 批准号:
    31224802
  • 批准年份:
    2012
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research
  • 批准号:
    31024804
  • 批准年份:
    2010
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Cell Research (细胞研究)
  • 批准号:
    30824808
  • 批准年份:
    2008
  • 资助金额:
    24.0 万元
  • 项目类别:
    专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
  • 批准号:
    10774081
  • 批准年份:
    2007
  • 资助金额:
    45.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347345
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347423
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: data-enabled dynamic microstructural modeling of flowing complex fluids
合作研究:CDS
  • 批准号:
    2347344
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Generalizable RANS Turbulence Models through Scientific Multi-Agent Reinforcement Learning
合作研究:CDS
  • 批准号:
    2347422
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E-MSS: Community detection via covariance structures
合作研究:CDS
  • 批准号:
    2245380
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Systematic Predictions for Dynamical Signatures of New Dark Matter Physics in Galaxies
合作研究:CDS
  • 批准号:
    2307787
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 13.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了