CDS&E: Efficient and Robust Recurrent Neural Networks
CDS
基本信息
- 批准号:1821144
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Deep neural networks have emerged over the last decade as one of the most powerful machine learning methods. Recurrent neural networks (RNNs) are special neural networks that are designed to efficiently model sequential data such as speech and text data by exploiting temporal connections within a sequence and handling varying sequence lengths in a dataset. While RNN and its variants have found success in many real-world applications, there are various issues that make them difficult to use in practice. This project will systematically address some of these difficulties and develop an efficient and robust RNN. Computer codes derived in this project will be made freely available. The research results will have applications in a variety of areas involving sequential data learning, including computer vision, speech recognition, natural language processing, financial data analysis, and bioinformatics.As in other neural networks, training of RNNs typically involves some variants of gradient descent optimization, which is prone to so-called vanishing or exploding gradient problems. Regularization of RNNs, which refers to techniques used to prevent the model from overfitting the raining data and hence poor generalization to new data, is also challenging. The current preferred RNN architectures such as the Long-Short-Term-Memory networks have highly complex structures with numerous additional interacting elements that are not easy to understand. This project develops an RNN that extends a recent orthogonal/unitary RNNs to more effectively model long and short term dependency of sequential data. Through an indirect parametrization of recurrent matrix, dropout regularization techniques will be developed. The network developed in this project will retain the simplicity and efficiency of basic RNNs but enhance some key capabilities for robust applications. In particular, the project will include a study of applications of RNNs to some bioinformatics problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度神经网络在过去十年中已经成为最强大的机器学习方法之一。递归神经网络(RNN)是一种特殊的神经网络,旨在通过利用序列中的时间连接并处理数据集中不同的序列长度来有效地对语音和文本数据等序列数据进行建模。虽然RNN及其变体在许多现实世界的应用中取得了成功,但仍存在各种问题使其难以在实践中使用。该项目将系统地解决其中的一些困难,并开发一个高效和强大的RNN。在这个项目中产生的计算机代码将免费提供。这些研究成果将在涉及序列数据学习的各种领域中得到应用,包括计算机视觉、语音识别、自然语言处理、金融数据分析和生物信息学。与其他神经网络一样,RNN的训练通常涉及梯度下降优化的一些变体,这很容易出现所谓的消失或爆炸梯度问题。RNN的正则化是指用于防止模型过度拟合训练数据并因此对新数据泛化能力差的技术,也具有挑战性。当前首选的RNN架构(如长短期记忆网络)具有高度复杂的结构,其中包含许多不容易理解的额外交互元素。该项目开发了一种RNN,扩展了最近的正交/酉RNN,以更有效地对序列数据的长期和短期依赖性进行建模。通过递归矩阵的间接参数化,将开发辍学正则化技术。该项目中开发的网络将保留基本RNN的简单性和效率,但增强了一些关键功能,以实现强大的应用程序。特别是,该项目将包括一个RNN的应用研究,一些生物信息学问题。这个奖项反映了NSF的法定使命,并已被认为是值得通过使用基金会的智力价值和更广泛的影响审查标准进行评估的支持。
项目成果
期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
AUTM Flow: Atomic Unrestricted Time Machine for Monotonic Normalizing Flows
AUTM Flow:用于单调归一化流的原子无限制时间机
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Cai, D.;Ji, Y.;He, H.;Ye, Q.
- 通讯作者:Ye, Q.
A robust deep learning approach for automatic classification of seizures against non-seizures
- DOI:10.1016/j.bspc.2020.102215
- 发表时间:2018-12
- 期刊:
- 影响因子:0
- 作者:Xinghua Yao;Xiaojin Li;Qiang Ye;Y. Huang;Q. Cheng;Guoqiang Zhang
- 通讯作者:Xinghua Yao;Xiaojin Li;Qiang Ye;Y. Huang;Q. Cheng;Guoqiang Zhang
Batch Normalization Preconditioning for Neural Network Training
- DOI:
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Susanna Lange;Kyle E. Helfrich;Qiang Ye
- 通讯作者:Susanna Lange;Kyle E. Helfrich;Qiang Ye
Improving RNA secondary structure prediction via state inference with deep recurrent neural networks
通过深度循环神经网络的状态推断改进 RNA 二级结构预测
- DOI:10.1515/cmb-2020-0002
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Willmott, Devin;Murrugarra, David;Ye, Qiang
- 通讯作者:Ye, Qiang
Complex Unitary Recurrent Neural Networks Using Scaled Cayley Transform
使用缩放凯莱变换的复杂酉循环神经网络
- DOI:10.1609/aaai.v33i01.33014528
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Maduranga, Kehelwala D.;Helfrich, Kyle E.;Ye, Qiang
- 通讯作者:Ye, Qiang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Ye其他文献
Biological Characterization of a Novel, Orally Active Small Molecule Gonadotropin-Releasing Hormone (GnRH) Antagonist Using Castrated and Intact Rats
使用去势和完整大鼠对新型口服活性小分子促性腺激素释放激素 (GnRH) 拮抗剂进行生物学表征
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:3.5
- 作者:
K. Anderes;D. Luthin;R. Castillo;E. Kraynov;Mary A Castro;K. Nared;Margaret L. Gregory;V. Pathak;L. Christie;G. Paderes;H. Vazir;Qiang Ye;Mark B. Anderson;J. May - 通讯作者:
J. May
Force Perception Instrument for Robotic Flexible Micro-Catheter Delivery in Glaucoma Surgery
用于青光眼手术中机器人柔性微导管输送的力感知仪器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ming;Gui;Qiang Ye - 通讯作者:
Qiang Ye
Game-Theoretic Optimization for Machine-Type Communications Under QoS Guarantee
QoS保证下机器类通信的博弈论优化
- DOI:
10.1109/jiot.2018.2856898 - 发表时间:
2018-07 - 期刊:
- 影响因子:10.6
- 作者:
Yu Gu;Qimei Cui;Qiang Ye;Weihua Zhuang - 通讯作者:
Weihua Zhuang
Determinants of hotel room price An exploration of travelers'; hierarchy of accommodation needs
酒店房价的决定因素对旅行者的探索;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:11.1
- 作者:
Ziqiong Zhang;Qiang Ye;Rob Law - 通讯作者:
Rob Law
Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence
- DOI:
10.1002/ange.202108661 - 发表时间:
2021 - 期刊:
- 影响因子:
- 作者:
Shuyuan Zheng;Jianlei Han;Xue Jin;Qiang Ye;Jin Zhou;Pengfei Duan;Minghua Liu - 通讯作者:
Minghua Liu
Qiang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Ye', 18)}}的其他基金
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
- 批准号:
2327113 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
- 批准号:
2208314 - 财政年份:2022
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Accurate Preconditioing for Computing Eigenvalues of Large and Extremely Ill-conditioned Matrices
用于计算大型和极病态矩阵特征值的精确预处理
- 批准号:
1620082 - 财政年份:2016
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Accurate and Efficient Algorithms for Computing Exponentials of Large Matrices with Applications
准确高效的大型矩阵指数计算算法及其应用
- 批准号:
1318633 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning
合作研究:CDS
- 批准号:
1317424 - 财政年份:2013
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
High Relative Accuracy Iterative Algorithms for Large Scale Matrix Eigenvalue Problems with Applications
大规模矩阵特征值问题的高相对精度迭代算法及其应用
- 批准号:
0915062 - 财政年份:2009
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Computing Interior Eigenvalues of Large Matrices by Preconditioned Krylov Subspace Methods
用预处理 Krylov 子空间方法计算大矩阵的内部特征值
- 批准号:
0411502 - 财政年份:2004
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Preconditioned Krylov Subspace Algorithms for Computing Eigenvalues of Large Matrices
用于计算大矩阵特征值的预处理 Krylov 子空间算法
- 批准号:
0098133 - 财政年份:2001
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
相似海外基金
CAREER: Unary Computing in Memory for Fast, Robust and Energy-Efficient Processing
职业:内存中的一元计算,实现快速、稳健和节能的处理
- 批准号:
2339701 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
CAREER: Exploring Mixed-Signal Computation for Energy-Efficient and Robust Brain-Machine Interfaces
职业:探索节能且鲁棒的脑机接口的混合信号计算
- 批准号:
2338159 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Towards Motion-Robust and Efficient Functional MRI Using Implicit Function Learning
使用内隐功能学习实现运动稳健且高效的功能 MRI
- 批准号:
EP/Y002016/1 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Research Grant
CAREER: New data integration approaches for efficient and robust meta-estimation, model fusion and transfer learning
职业:新的数据集成方法,用于高效、稳健的元估计、模型融合和迁移学习
- 批准号:
2337943 - 财政年份:2024
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311596 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: III: Small: Efficient and Robust Multi-model Data Analytics for Edge Computing
协作研究:III:小型:边缘计算的高效、稳健的多模型数据分析
- 批准号:
2311598 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Robust and Efficient Model-based Reinforcement Learning
稳健高效的基于模型的强化学习
- 批准号:
EP/X03917X/1 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Research Grant
Rotation 1: Robust and efficient spiking computations
旋转 1:稳健且高效的尖峰计算
- 批准号:
2888219 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Studentship
Construction of an Efficient and Robust Ophthalmic Big Data and AI System through Implementation of Federated Learning
通过实施联邦学习构建高效、鲁棒的眼科大数据和人工智能系统
- 批准号:
23K17434 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Grant-in-Aid for Challenging Research (Pioneering)
FREEpHRI: Flexible, Robust and Efficient physical Human-robot Interaction with iterative learning and self-triggered role adaption
FREEpHRI:灵活、稳健、高效的物理人机交互,具有迭代学习和自我触发的角色适应能力
- 批准号:
EP/V057782/2 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Fellowship