Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
基本信息
- 批准号:2208314
- 负责人:
- 金额:$ 33.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-01 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Deep learning is at the forefront of research in artificial intelligence and machine learning, impacting a variety of applications in data science such as computer vision, speech recognition, natural language processing, and bioinformatics. A key challenge in deep neural network learning is model optimization, which is used for network training. However, traditional optimization algorithms are not applicable, primarily due to the high complexity and nonlinearity of deep neural networks. The goal of this project is to develop novel robust optimization algorithms that can effectively address these difficulties and can more efficiently train deep learning models in practice. The project also involves the application of this work to the translation of equivalent chemical representations used in drug design as well as Bayesian inference for uncertainty quantification. As part of this project, graduate and undergraduate students will be trained in deep learning research, and software will be developed and made freely available.This project includes the development of two new classes of optimization algorithms that are built on the frameworks of traditional preconditioning and conjugate gradient methods but incorporate ideas from some successful specialized deep learning optimizers such as normalization methods and momentum methods. Specifically, the project will develop a new class of preconditioning methods as a widely applicable alternative to the normalization methods and a new class of adaptive momentum methods as a robust alternative to the fixed momentum methods. Related convergence theory will be established, and the new methods will be adapted to state-of-the-art neural network architectures such as transformer and graph neural networks. The novel algorithms developed in this project intend to bring some of the most fruitful ideas in numerical analysis to the advancement of neural network optimization.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
深度学习是人工智能和机器学习研究的前沿,影响着数据科学中的各种应用,如计算机视觉、语音识别、自然语言处理和生物信息学。深度神经网络学习的一个关键挑战是模型优化,用于网络训练。然而,传统的优化算法并不适用,主要是由于深度神经网络的高复杂性和非线性。该项目的目标是开发新的鲁棒优化算法,可以有效地解决这些困难,并在实践中更有效地训练深度学习模型。该项目还涉及这项工作的应用,在药物设计中使用的等效化学表示的翻译,以及贝叶斯推理的不确定性量化。作为该项目的一部分,研究生和本科生将接受深度学习研究的培训,软件将被开发并免费提供。该项目包括开发两类新的优化算法,这些算法构建在传统预处理和共轭梯度方法的框架上,但结合了一些成功的专业深度学习优化器的思想,如归一化方法和动量方法。具体而言,该项目将开发一类新的预处理方法作为归一化方法的广泛适用的替代方案,以及一类新的自适应动量方法作为固定动量方法的稳健替代方案。相关的收敛理论将被建立,新的方法将被调整到最先进的神经网络架构,如Transformer和图形神经网络。该项目开发的新算法旨在将数值分析中最富有成果的一些想法带到神经网络优化的进步中。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Symmetry-structured convolutional neural networks
- DOI:10.1007/s00521-022-08168-3
- 发表时间:2022-03
- 期刊:
- 影响因子:6
- 作者:K. D. G. Maduranga;Vasily Zadorozhnyy;Qiang Ye
- 通讯作者:K. D. G. Maduranga;Vasily Zadorozhnyy;Qiang Ye
Improving Deep Neural Networks’ Training for Image Classification With Nonlinear Conjugate Gradient-Style Adaptive Momentum
使用非线性共轭梯度式自适应动量改进深度神经网络 - 图像分类训练
- DOI:10.1109/tnnls.2023.3255783
- 发表时间:2023
- 期刊:
- 影响因子:10.4
- 作者:Wang, Bao;Ye, Qiang
- 通讯作者:Ye, Qiang
Deep learning based real-time and in-situ monitoring of weld penetration: Where we are and what are needed revolutionary solutions?
- DOI:10.1016/j.jmapro.2023.03.011
- 发表时间:2023-05
- 期刊:
- 影响因子:6.2
- 作者:Rui Yu;Yue Cao;Heping Chen;Qiang Ye;Yuming Zhang
- 通讯作者:Rui Yu;Yue Cao;Heping Chen;Qiang Ye;Yuming Zhang
Novel Molecular Representations Using Neumann-Cayley Orthogonal Gated Recurrent Unit
- DOI:10.1021/acs.jcim.2c01526
- 发表时间:2023-04
- 期刊:
- 影响因子:5.6
- 作者:Edison Mucllari;Vasily Zadorozhnyy;Qiang Ye;D. Nguyen
- 通讯作者:Edison Mucllari;Vasily Zadorozhnyy;Qiang Ye;D. Nguyen
Do We Need a New Foundation to Use Deep Learning to Monitor Weld Penetration?
- DOI:10.1109/lra.2023.3270038
- 发表时间:2023-06
- 期刊:
- 影响因子:5.2
- 作者:Edison Mucllari;Rui Yu;Yue Cao;Qiang Ye;Yuming Zhang
- 通讯作者:Edison Mucllari;Rui Yu;Yue Cao;Qiang Ye;Yuming Zhang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qiang Ye其他文献
Game-Theoretic Optimization for Machine-Type Communications Under QoS Guarantee
QoS保证下机器类通信的博弈论优化
- DOI:
10.1109/jiot.2018.2856898 - 发表时间:
2018-07 - 期刊:
- 影响因子:10.6
- 作者:
Yu Gu;Qimei Cui;Qiang Ye;Weihua Zhuang - 通讯作者:
Weihua Zhuang
Determinants of hotel room price An exploration of travelers'; hierarchy of accommodation needs
酒店房价的决定因素对旅行者的探索;
- DOI:
- 发表时间:
- 期刊:
- 影响因子:11.1
- 作者:
Ziqiong Zhang;Qiang Ye;Rob Law - 通讯作者:
Rob Law
Biological Characterization of a Novel, Orally Active Small Molecule Gonadotropin-Releasing Hormone (GnRH) Antagonist Using Castrated and Intact Rats
使用去势和完整大鼠对新型口服活性小分子促性腺激素释放激素 (GnRH) 拮抗剂进行生物学表征
- DOI:
- 发表时间:
2003 - 期刊:
- 影响因子:3.5
- 作者:
K. Anderes;D. Luthin;R. Castillo;E. Kraynov;Mary A Castro;K. Nared;Margaret L. Gregory;V. Pathak;L. Christie;G. Paderes;H. Vazir;Qiang Ye;Mark B. Anderson;J. May - 通讯作者:
J. May
Force Perception Instrument for Robotic Flexible Micro-Catheter Delivery in Glaucoma Surgery
用于青光眼手术中机器人柔性微导管输送的力感知仪器
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Ming;Gui;Qiang Ye - 通讯作者:
Qiang Ye
Transport-Layer Protocol Customization for 5G Core Networks
5G核心网传输层协议定制
- DOI:
10.1007/978-3-030-88666-0_4 - 发表时间:
2021 - 期刊:
- 影响因子:3
- 作者:
Qiang Ye;W. Zhuang - 通讯作者:
W. Zhuang
Qiang Ye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qiang Ye', 18)}}的其他基金
RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
- 批准号:
2327113 - 财政年份:2023
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
CDS&E: Efficient and Robust Recurrent Neural Networks
CDS
- 批准号:
1821144 - 财政年份:2018
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Accurate Preconditioing for Computing Eigenvalues of Large and Extremely Ill-conditioned Matrices
用于计算大型和极病态矩阵特征值的精确预处理
- 批准号:
1620082 - 财政年份:2016
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning
合作研究:CDS
- 批准号:
1317424 - 财政年份:2013
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Accurate and Efficient Algorithms for Computing Exponentials of Large Matrices with Applications
准确高效的大型矩阵指数计算算法及其应用
- 批准号:
1318633 - 财政年份:2013
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
High Relative Accuracy Iterative Algorithms for Large Scale Matrix Eigenvalue Problems with Applications
大规模矩阵特征值问题的高相对精度迭代算法及其应用
- 批准号:
0915062 - 财政年份:2009
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Computing Interior Eigenvalues of Large Matrices by Preconditioned Krylov Subspace Methods
用预处理 Krylov 子空间方法计算大矩阵的内部特征值
- 批准号:
0411502 - 财政年份:2004
- 资助金额:
$ 33.6万 - 项目类别:
Standard Grant
Preconditioned Krylov Subspace Algorithms for Computing Eigenvalues of Large Matrices
用于计算大矩阵特征值的预处理 Krylov 子空间算法
- 批准号:
0098133 - 财政年份:2001
- 资助金额:
$ 33.6万 - 项目类别:
Continuing Grant
相似海外基金
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2022
- 资助金额:
$ 33.6万 - 项目类别:
Discovery Grants Program - Individual
Quantifying VN Antibodies of BRD-causing Viruses in Preconditioned Calves Using V
使用 V 定量预处理犊牛中引起 BRD 的病毒的 VN 抗体
- 批准号:
574787-2022 - 财政年份:2022
- 资助金额:
$ 33.6万 - 项目类别:
University Undergraduate Student Research Awards
Advances in Scalable Iterative Solvers: Multilevel, Nonlinearly Preconditioned, and Parallel-in-Time
可扩展迭代求解器的进展:多级、非线性预处理和时间并行
- 批准号:
RGPIN-2019-04155 - 财政年份:2021
- 资助金额:
$ 33.6万 - 项目类别:
Discovery Grants Program - Individual
Netrin-1 and Netrin-1 Preconditioned EPCs in Vascular Protection
Netrin-1 和 Netrin-1 预处理 EPC 在血管保护中的作用
- 批准号:
10557815 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Renal repair effects of senolytic preconditioned mesenchymal stromal cells in diabetic kidney disease
senolytic 预处理间充质基质细胞对糖尿病肾病的肾修复作用
- 批准号:
10170555 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Renal repair effects of senolytic preconditioned mesenchymal stromal cells in diabetic kidney disease
senolytic 预处理间充质基质细胞对糖尿病肾病的肾修复作用
- 批准号:
10200246 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Netrin-1 and Netrin-1 Preconditioned EPCs in Vascular Protection
Netrin-1 和 Netrin-1 预处理 EPC 在血管保护中的作用
- 批准号:
10361442 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Renal repair effects of senolytic preconditioned mesenchymal stromal cells in diabetic kidney disease
senolytic 预处理间充质基质细胞对糖尿病肾病的肾修复作用
- 批准号:
10092153 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Therapeutic strategy of hypoxia preconditioned microglia for vascular dementia
缺氧预处理小胶质细胞治疗血管性痴呆的治疗策略
- 批准号:
20K22683 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Netrin-1 and Netrin-1 Preconditioned EPCs in Vascular Protection
Netrin-1 和 Netrin-1 预处理 EPC 在血管保护中的作用
- 批准号:
10132380 - 财政年份:2020
- 资助金额:
$ 33.6万 - 项目类别: