High Relative Accuracy Iterative Algorithms for Large Scale Matrix Eigenvalue Problems with Applications

大规模矩阵特征值问题的高相对精度迭代算法及其应用

基本信息

  • 批准号:
    0915062
  • 负责人:
  • 金额:
    $ 17.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-06-01 至 2013-05-31
  • 项目状态:
    已结题

项目摘要

Eigenvalue computation is a fundamental problem in numericallinear algebra. While there are numerous established algorithmsfor this, they do not guarantee in general to compute, in afloating point arithmetic, smaller eigenvalues to high relativeaccuracy. Indeed, the relative errors of smaller eigenvaluescomputed by conventional algorithms are proportional to thecondition number of the matrix. Research over the last twodecades has resulted in several classes of special matricesfor which the eigenvalues/eigenvectors can be computed to highrelative accuracy (i.e. independent of the condition number).All existing high relative accuracy algorithms, however, appearto concern small (dense) matrices only. Yet, large matrices areoften inherently ill-conditioned and it is typically a fewsmaller eigenvalues that are of interests. The goals of thisproposal are to study high relative accuracy iterativealgorithms for computing a few eigenvalues/eigenvectors of alarge symmetric positive definite matrix. The investigator willdevelop algorithms for matrices arising in some importantapplications such as discretization of differential operatorsand dimensionality reduction in machine learning, where specialstructure/properties of the matrices may be exploited toachieve higher accuracy.Spectral (eigenvalue) analysis is a widely used mathematicaltool in science and engineering. Eigenvalues of differentialoperators describe the natural vibrating frequencies ofmechanical structures. Dimensionality reduction ofhigh-dimensional data in machine learning often leads tominimization of certain quadratic functionals, the solutions ofwhich are eigenvectors. Solving such eigenvalue problems tohigh relative accuracy pose a challenge to existing algorithms.Therefore, the proposed works will not only advance theoreticalfoundations and algorithm developments for large scaleeigenvalue problems, but also contribute to the general areasof applied science/engineering and machine learning bysignificantly improving the accuracy of the algorithms used inthese applications.
特征值计算是数值线性代数中的一个基本问题。虽然有许多已建立的算法,但它们通常不能保证在浮点运算中计算较小的特征值以获得较高的相对精度。实际上,由传统算法计算的较小特征值的相对误差与矩阵的条件数成正比。过去二十年的研究已经产生了几类特殊矩阵,其特征值/特征向量可以计算到较高的相对精度(即独立于条件数)。然而,所有现有的高相对精度算法似乎只关注小(密集)矩阵。然而,大矩阵通常是固有的病态的,通常是一些较小的特征值。本文的目标是研究计算大型对称正定矩阵的几个特征值/特征向量的相对精度较高的迭代算法。研究者将为一些重要应用中出现的矩阵开发算法,例如微分算子的离散化和机器学习中的降维,其中可以利用矩阵的特殊结构/属性来实现更高的精度。谱(特征值)分析是科学和工程中广泛使用的数学工具。微分算子的特征值描述了机械结构的固有振动频率。在机器学习中,高维数据的降维往往导致某些二次函数的最小化,其解是特征向量。以较高的相对精度解决这类特征值问题对现有算法提出了挑战。因此,所提出的工作不仅将推进大规模特征值问题的理论基础和算法开发,而且还将通过显着提高这些应用中使用的算法的准确性,为应用科学/工程和机器学习的一般领域做出贡献。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Qiang Ye其他文献

Biological Characterization of a Novel, Orally Active Small Molecule Gonadotropin-Releasing Hormone (GnRH) Antagonist Using Castrated and Intact Rats
使用去势和完整大鼠对新型口服活性小分子促性腺激素释放激素 (GnRH) 拮抗剂进行生物学表征
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    K. Anderes;D. Luthin;R. Castillo;E. Kraynov;Mary A Castro;K. Nared;Margaret L. Gregory;V. Pathak;L. Christie;G. Paderes;H. Vazir;Qiang Ye;Mark B. Anderson;J. May
  • 通讯作者:
    J. May
Force Perception Instrument for Robotic Flexible Micro-Catheter Delivery in Glaucoma Surgery
用于青光眼手术中机器人柔性微导管输送的力感知仪器
Game-Theoretic Optimization for Machine-Type Communications Under QoS Guarantee
QoS保证下机器类通信的博弈论优化
  • DOI:
    10.1109/jiot.2018.2856898
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Yu Gu;Qimei Cui;Qiang Ye;Weihua Zhuang
  • 通讯作者:
    Weihua Zhuang
Determinants of hotel room price An exploration of travelers'; hierarchy of accommodation needs
酒店房价的决定因素对旅行者的探索;
Halogen Bonded Chiral Emitters: Generation of Chiral Fractal Architecture with Amplified Circularly Polarized Luminescence
  • DOI:
    10.1002/ange.202108661
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
  • 作者:
    Shuyuan Zheng;Jianlei Han;Xue Jin;Qiang Ye;Jin Zhou;Pengfei Duan;Minghua Liu
  • 通讯作者:
    Minghua Liu

Qiang Ye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Qiang Ye', 18)}}的其他基金

RI: Small: Optimal Transport Generative Adversarial Networks: Theory, Algorithms, and Applications
RI:小型:最优传输生成对抗网络:理论、算法和应用
  • 批准号:
    2327113
  • 财政年份:
    2023
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Robust Preconditioned Gradient Descent Algorithms for Deep Learning
用于深度学习的鲁棒预条件梯度下降算法
  • 批准号:
    2208314
  • 财政年份:
    2022
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
CDS&E: Efficient and Robust Recurrent Neural Networks
CDS
  • 批准号:
    1821144
  • 财政年份:
    2018
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Accurate Preconditioing for Computing Eigenvalues of Large and Extremely Ill-conditioned Matrices
用于计算大型和极病态矩阵特征值的精确预处理
  • 批准号:
    1620082
  • 财政年份:
    2016
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Collaborative Research: CDS&E-MSS: Robust Algorithms for Interpolation and Extrapolation in Manifold Learning
合作研究:CDS
  • 批准号:
    1317424
  • 财政年份:
    2013
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Accurate and Efficient Algorithms for Computing Exponentials of Large Matrices with Applications
准确高效的大型矩阵指数计算算法及其应用
  • 批准号:
    1318633
  • 财政年份:
    2013
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Computing Interior Eigenvalues of Large Matrices by Preconditioned Krylov Subspace Methods
用预处理 Krylov 子空间方法计算大矩阵的内部特征值
  • 批准号:
    0411502
  • 财政年份:
    2004
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Preconditioned Krylov Subspace Algorithms for Computing Eigenvalues of Large Matrices
用于计算大矩阵特征值的预处理 Krylov 子空间算法
  • 批准号:
    0098133
  • 财政年份:
    2001
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant

相似海外基金

WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
  • 批准号:
    10093543
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Collaborative R&D
Investigating the acceptability and accuracy of cervical screening and self-sampling in postnatal women to coincide with the 6-week postnatal check-up
调查产后妇女进行宫颈筛查和自我采样以配合产后 6 周检查的可接受性和准确性
  • 批准号:
    MR/X030776/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Research Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
Sample Size calculations for UPDATing clinical prediction models to Ensure their accuracy and fairness in practice (SS-UPDATE)
用于更新临床预测模型的样本量计算,以确保其在实践中的准确性和公平性(SS-UPDATE)
  • 批准号:
    MR/Z503873/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods PID 7012435
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性 PID 7012435
  • 批准号:
    BB/X018563/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Research Grant
Improving accuracy, coverage, and sustainability of functional protein annotation in InterPro, Pfam and FunFam using Deep Learning methods
使用深度学习方法提高 InterPro、Pfam 和 FunFam 中功能蛋白注释的准确性、覆盖范围和可持续性
  • 批准号:
    BB/X018660/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Research Grant
STTR Phase I: Microhydraulic Actuator for High-Accuracy, High-Speed Position Stages
STTR 第一阶段:用于高精度、高速位置平台的微液压执行器
  • 批准号:
    2335170
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Continuing Grant
DMS-EPSRC: Certifying Accuracy of Randomized Algorithms in Numerical Linear Algebra
DMS-EPSRC:验证数值线性代数中随机算法的准确性
  • 批准号:
    EP/Y030990/1
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Research Grant
An innovative Lawtech AI/ML platform with human oversight that manages off-payroll worker status and periodically assesses the role status to ensure accuracy.
具有人工监督功能的创新 Lawtech AI/ML 平台,可管理工资外员工的状态并定期评估角色状态以确保准确性。
  • 批准号:
    10099483
  • 财政年份:
    2024
  • 资助金额:
    $ 17.83万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了