Computation with Finitely Presented Groups

有限呈现群的计算

基本信息

  • 批准号:
    1318716
  • 负责人:
  • 金额:
    $ 26.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-15 至 2016-08-31
  • 项目状态:
    已结题

项目摘要

Intractable computational problems, in particular recursively unsolvable problems, occur naturally in combinatorial group theory and have been studied in that context for over a hundred years. This project is devoted to finding better algorithms and partial algorithms for these problems, both for well-known ones and also for new ones which have arisen, for example, in group-based cryptography. Using techniques developed in their previous work, the investigators will perform computer experiments to discover and test new computational procedures and also to gather information on the distribution of hard instances in specific problems. An algorithm for a computational problem may be useful even though it sometimes fails, if its failures are rare. A well known example is the simplex algorithm for linear optimization. This algorithm (which is used hundreds or thousands of times every day) can take a very long time for certain carefully constructed cases but never does so in practice. In other words the difficult cases are extremely rare. Although there are many other algorithms which behave the same way, this phenomenon is not well understood. The broader significance of this project is that it seeks a better understanding through investigation of an appropriate class of computational problems.
难以解决的计算问题,特别是递归不可解的问题,自然发生在组合群论中,并已在该背景下研究了一百多年。该项目致力于为这些问题找到更好的算法和部分算法,既为众所周知的,也为新出现的,例如,在基于组的密码学。使用在他们以前的工作中开发的技术,研究人员将进行计算机实验,以发现和测试新的计算程序,并收集有关特定问题中硬实例分布的信息。 一个计算问题的算法可能是有用的,即使它有时会失败,如果它的失败是罕见的。一个著名的例子是线性优化的单纯形算法。这种算法(每天使用数百或数千次)可能会花费很长时间来处理某些精心构建的案例,但在实践中从未如此。换句话说,困难的病例非常罕见。虽然有许多其他算法以相同的方式运行,但这种现象并没有得到很好的理解。这个项目的更广泛的意义在于,它通过调查适当的一类计算问题来寻求更好的理解。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robert Gilman其他文献

Human Proteomic Profiles in Latent and Active Tuberculosis
  • DOI:
    10.1016/j.jinf.2009.10.017
  • 发表时间:
    2009-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Gurjinder Sandhu;Dimitris Athanasakis;Carlton Evans;Barry Ely;Rosario Montoya;Robert Gilman;Teresa Valencia;Rosario Sosa;Jon Friedland;Delmiro Fernandez-Reyes;Dan Agranoff
  • 通讯作者:
    Dan Agranoff
Quantitative MODS-Wayne assay for rapid detection of pyrazinamide resistance in emMycobacterium tuberculosis/em from sputum samples
定量 MODS-Wayne 检测法用于快速检测痰标本中结核分枝杆菌的吡嗪酰胺耐药性
  • DOI:
    10.1128/spectrum.00471-24
  • 发表时间:
    2024-10-30
  • 期刊:
  • 影响因子:
    3.800
  • 作者:
    Emily Toscano-Guerra;Roberto Alcántara;Katherine Lozano Untiveros;Robert Gilman;Louis Grandjean;Mirko Zimic;Patricia Sheen
  • 通讯作者:
    Patricia Sheen
SHORT-TERM (10-YEAR) AND LIFETIME PREDICTED RISK FOR CARDIOVASCULAR DISEASE: THE CRONICAS COHORT STUDY
  • DOI:
    10.1016/s0735-1097(14)61386-3
  • 发表时间:
    2014-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Renato Quispe;Juan Carlos Bazo-Alvarez;Julio Poterico;Antonio Bernabé-Ortiz;William Checkley;Robert Gilman;Mark Huffman;Jaime Miranda
  • 通讯作者:
    Jaime Miranda
UNDERSTANDING THE ROLE OF STRAIN IMAGING IN THE EARLY DETECTION OF CHAGAS CARDIOMYOPATHY
  • DOI:
    10.1016/s0735-1097(17)34889-1
  • 发表时间:
    2017-03-21
  • 期刊:
  • 影响因子:
  • 作者:
    Daniel M. Alyeshmerni;Patrick Green;Gustavo Duran;Margaret Prust;Freddy Tinajeros;Manuela Verastegui;Holger Mayta;Jorge Flores;Carballo Paula;Lola Camila;Caryn Bern;Thomas Crawford;Robert Gilman;Theodore Kolias
  • 通讯作者:
    Theodore Kolias
Chagas disease in the United States: a call for increased investment and collaborative research
美国的恰加斯病:呼吁增加投资和开展合作研究
  • DOI:
    10.1016/j.lana.2024.100768
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    7.600
  • 作者:
    Nelson Iván Agudelo Higuita;Norman L. Beatty;Colin Forsyth;Andrés F. Henao-Martínez;Jennifer Manne-Goehler;Daniel Bourque;Natalie M. Bowman;Malwina Carrion;Christina Coyle;Madolyn Dauphinais;Kelly DeToy;Robert Gilman;Davidson H. Hamer;Jesica Herick;Salvador Hernandez;Claudia Herrera;Rachel Marcus;Sheba Meymandi;Melissa Nolan;Katherine Reifler;Alyse Wheelock
  • 通讯作者:
    Alyse Wheelock

Robert Gilman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robert Gilman', 18)}}的其他基金

Geometric and Asymptotic Group Theory with Applications 2017
几何和渐近群理论及其应用 2017
  • 批准号:
    1744834
  • 财政年份:
    2017
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
Formal Language Invariants of Finitely Generated Groups
有限生成群的形式语言不变量
  • 批准号:
    9401090
  • 财政年份:
    1994
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
The Structure of Maximal Subgroups of Finite Simple Groups
有限单群的极大子群的结构
  • 批准号:
    8002164
  • 财政年份:
    1980
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
Pre-College Teacher Development in Science
学前教育教师科学发展
  • 批准号:
    7901878
  • 财政年份:
    1979
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
Academic Year Pre-College Teacher Development Project in Sciences
学年大学前科学教师发展项目
  • 批准号:
    7713051
  • 财政年份:
    1977
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant
Components in Finite Groups of Characteristic Two Type
特征二型有限群中的分量
  • 批准号:
    7605987
  • 财政年份:
    1976
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Standard Grant

相似海外基金

ergotic transition in finitely bounded small number quantum chaotic systems and its semiclassics
有限有界小数量子混沌系统及其半经典中的遍历转变
  • 批准号:
    22K03476
  • 财政年份:
    2022
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Hyperbolicity of Finitely Generated Groups
有限生成群的双曲性
  • 批准号:
    2742050
  • 财政年份:
    2022
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Studentship
Analysis on reputation effects in finitely repeated games with one-sided incomplete information
片面不完全信息有限重复博弈中声誉效应分析
  • 批准号:
    22K01391
  • 财政年份:
    2022
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Coset growth in finitely generated groups
有限生成群中的陪集增长
  • 批准号:
    551653-2020
  • 财政年份:
    2020
  • 资助金额:
    $ 26.95万
  • 项目类别:
    University Undergraduate Student Research Awards
On the rigidity of finitely generated groups of homomorphisms of the circle
关于圆的有限生成同态群的刚性
  • 批准号:
    19K23406
  • 财政年份:
    2019
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Analytic Properties of Group Actions of Finitely Generated Groups
有限生成群的群作用的解析性质
  • 批准号:
    1901467
  • 财政年份:
    2019
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Continuing Grant
Finitely-generated modules over special biserial algebras: a combinatorial model using strips and belts
特殊双列代数上的有限生成模块:使用条带和带的组合模型
  • 批准号:
    2271342
  • 财政年份:
    2019
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Studentship
Interaction of Algebraic, Algorithmic and Asymptotic Properties in Finitely Generated Groups
有限生成群中代数、算法和渐近性质的相互作用
  • 批准号:
    1901976
  • 财政年份:
    2019
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Continuing Grant
Complexity amongst the finitely generated subgroups of Thompson's Group
汤普森群的有限生成子群之间的复杂性
  • 批准号:
    2275823
  • 财政年份:
    2019
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Studentship
CAREER: Amenable and recurrent actions of finitely generated groups
职业:有限生成群的顺从且经常性的行动
  • 批准号:
    1932552
  • 财政年份:
    2018
  • 资助金额:
    $ 26.95万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了