III: SMALL: Moving Beyond Knowledge to Action: Evaluating and Improving the Utility of Causal Inference

III:小:超越知识到行动:评估和提高因果推理的实用性

基本信息

  • 批准号:
    1907951
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

One of the key recent advances in machine learning is the ability to learn causal structures from observational data. Unlike correlations, causes let us robustly predict the future and identify which variables to intervene on to potentially change it. As a result, many computational methods have been introduced to better discover causes from the large datasets that are increasingly becoming available. However, algorithms for finding causes are mainly evaluated on how accurately they can recover ground truth. This assumes that the most complete and accurate causal model will be the most useful one, but this assumption has not been tested and people often struggle to make sense of complex information. Causal models can also be used to better understand the effects of actions, which could further improve decisions. While current methods identify the effects of turning a variable on or off, this is not the right level of detail for an individual making choices such as a person with diabetes deciding what specific food to consume for breakfast. Further, the users of the output of causal inference are not those developing the methods, but rather people with varying levels of background knowledge and perceived expertise. This project focuses on reducing the gap between machine learning and human decision-making by quantifying the utility of causal models, introducing new methods that make causal models more useful and usable, and leveraging the results to improve everyday decisions around diet and exercise. This project aims to close the loop from data to knowledge to action, through better metrics for evaluating causal inference, and algorithms that make causal models more useful and personalized. This work will advance our ability to effectively use the output of machine learning, and encourage the development of methods that produce output with high utility. First, this project develops novel ways to automatically evaluate the utility of a set of inferred causes, which allow algorithms to be compared along this new dimension that provides more insight into real-world use. In particular, new metrics are developed that take into account model, user, and context features to allow causal models to be automatically scored on how useful they are for decision-making. Second, the developed metrics are used to guide development of more useful models that accurately predict the effects of interventions and incorporate mechanistic information. A key gap translating causal models to real-world use is the need to predict the result of interventions that may not directly map to variables (e.g. drinking orange juice is not the same as directly increasing glucose). The new methods developed can predict intervention effects using simulation, and map models to mechanistic information to enable further insight. Lastly, the project demonstrates that these enhanced causal models can improve real-life decisions. The project can help make the output of machine learning actionable, and may have applications in many important decision-making scenarios related to health, finance, and personal transportation. The research may more generally improve decision-making, and can be applied to areas as diverse as reducing distracted driving and understanding the impact of choices on energy usage.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习最近的一个关键进展是能够从观测数据中学习因果结构。与相关性不同,原因让我们能够稳健地预测未来,并确定哪些变量可以干预以潜在地改变它。因此,许多计算方法已经被引入,以更好地从越来越多的大型数据集中发现原因。然而,用于查找原因的算法主要根据它们恢复地面真相的准确性进行评估。这假设最完整和准确的因果模型将是最有用的模型,但这一假设尚未得到验证,人们往往难以理解复杂的信息。因果模型也可以用来更好地理解行为的影响,这可以进一步改善决策。虽然目前的方法可以识别打开或关闭变量的影响,但这并不是个人做出选择的正确细节水平,例如糖尿病患者决定早餐吃什么特定食物。此外,因果推理输出的用户不是开发方法的人,而是具有不同水平的背景知识和感知专业知识的人。该项目的重点是通过量化因果模型的效用来减少机器学习和人类决策之间的差距,引入使因果模型更有用和可用的新方法,并利用结果来改善日常饮食和运动决策。该项目旨在通过更好的评估因果推理的指标,以及使因果模型更有用和个性化的算法,闭合从数据到知识再到行动的循环。这项工作将提高我们有效利用机器学习输出的能力,并鼓励开发产生高实用性输出的方法。首先,该项目开发了新的方法来自动评估一组推断原因的效用,这使得算法能够沿着沿着这个新的维度进行比较,从而提供对现实世界使用的更多见解。特别是,开发了考虑模型、用户和上下文特征的新指标,以允许因果模型根据其对决策的有用程度自动评分。其次,开发的指标用于指导更有用的模型,准确地预测干预措施的影响,并纳入机械信息的发展。将因果模型转化为现实世界使用的一个关键差距是需要预测可能不直接映射到变量的干预措施的结果(例如,喝橙子汁与直接增加葡萄糖不同)。开发的新方法可以使用模拟来预测干预效果,并将模型映射到机械信息,以实现进一步的洞察。最后,该项目表明,这些增强的因果模型可以改善现实生活中的决策。该项目可以帮助使机器学习的输出具有可操作性,并可能在与健康,金融和个人交通相关的许多重要决策场景中应用。该研究可能会更普遍地改善决策,并可应用于减少分心驾驶和了解选择对能源使用的影响等不同领域。该奖项反映了NSF的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quantifying the Utility of Causal Models for Decision-Making
量化因果模型在决策中的效用
Absence Makes the Trust in Causal Models Grow Stronger
缺席使人们对因果模型的信任变得更强
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samantha Kleinberg其他文献

Systems Biology via Redescription and Ontologies : Untangling the Malaria Parasite Life Cycle
通过重新描述和本体论进行系统生物学:解开疟疾寄生虫的生命周期
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha Kleinberg;Kevin Casey;B. Mishra
  • 通讯作者:
    B. Mishra
Predicting Malaria Interactome Classifications from Time-course Transcriptomic Data along the Intraerythrocytic Developmental Cycle
从红细胞内发育周期的时程转录组数据预测疟疾相互作用组分类
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antonina Mitrofanova;Samantha Kleinberg;Jane Carlton;Simon Kasif;Bud Mishra
  • 通讯作者:
    Bud Mishra
Metamorphosis: the Coming Transformation of Translational Systems Biology
变形:转化系统生物学即将到来的变革
  • DOI:
    10.1145/1626135.1629775
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha Kleinberg;B. Mishra
  • 通讯作者:
    B. Mishra
Causal inference for time series datasets with partially overlapping variables
具有部分重叠变量的时间序列数据集的因果推断
  • DOI:
    10.1016/j.jbi.2025.104828
  • 发表时间:
    2025-06-01
  • 期刊:
  • 影响因子:
    4.500
  • 作者:
    Louis Adedapo Gomez;Jan Claassen;Samantha Kleinberg
  • 通讯作者:
    Samantha Kleinberg
Causality, Probability, and Time: Bibliography
  • DOI:
    10.1017/cbo9781139207799.012
  • 发表时间:
    2012-11
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Samantha Kleinberg
  • 通讯作者:
    Samantha Kleinberg

Samantha Kleinberg的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Samantha Kleinberg', 18)}}的其他基金

Collaborative Research: Using Causal Explanations and Computation to Understand Misplaced Beliefs
协作研究:使用因果解释和计算来理解错误的信念
  • 批准号:
    2146984
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
SCH: INT: Collaborative Research: Uniting Causal and Mental Models for Shared Decision-Making in Diabetes
SCH:INT:协作研究:联合因果模型和心理模型以共同制定糖尿病决策
  • 批准号:
    1915182
  • 财政年份:
    2019
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CAREER: Learning from Observational Data with Knowledge
职业:从观察数据中学习知识
  • 批准号:
    1347119
  • 财政年份:
    2014
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant

相似国自然基金

昼夜节律性small RNA在血斑形成时间推断中的法医学应用研究
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
tRNA-derived small RNA上调YBX1/CCL5通路参与硼替佐米诱导慢性疼痛的机制研究
  • 批准号:
    n/a
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    省市级项目
Small RNA调控I-F型CRISPR-Cas适应性免疫性的应答及分子机制
  • 批准号:
    32000033
  • 批准年份:
    2020
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
Small RNAs调控解淀粉芽胞杆菌FZB42生防功能的机制研究
  • 批准号:
    31972324
  • 批准年份:
    2019
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
变异链球菌small RNAs连接LuxS密度感应与生物膜形成的机制研究
  • 批准号:
    81900988
  • 批准年份:
    2019
  • 资助金额:
    21.0 万元
  • 项目类别:
    青年科学基金项目
肠道细菌关键small RNAs在克罗恩病发生发展中的功能和作用机制
  • 批准号:
    31870821
  • 批准年份:
    2018
  • 资助金额:
    56.0 万元
  • 项目类别:
    面上项目
基于small RNA 测序技术解析鸽分泌鸽乳的分子机制
  • 批准号:
    31802058
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
Small RNA介导的DNA甲基化调控的水稻草矮病毒致病机制
  • 批准号:
    31772128
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于small RNA-seq的针灸治疗桥本甲状腺炎的免疫调控机制研究
  • 批准号:
    81704176
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
水稻OsSGS3与OsHEN1调控small RNAs合成及其对抗病性的调节
  • 批准号:
    91640114
  • 批准年份:
    2016
  • 资助金额:
    85.0 万元
  • 项目类别:
    重大研究计划

相似海外基金

ONIX: A Neural Acquisition System for Unencumbered, Closed-Loop Recordings in Small, Freely Moving Animals
ONIX:一种神经采集系统,用于对小型、自由移动的动物进行无阻碍、闭环记录
  • 批准号:
    10482182
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
Moving to a data informed understanding of cerebrovascular small vessel disease.
通过数据了解脑血管小血管疾病。
  • 批准号:
    2765783
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Studentship
Wireless Power Transmission System for High-Throughput Behavioral Studies on Small Freely Moving Animal Subjects
用于小型自由移动动物受试者高通量行为研究的无线电力传输系统
  • 批准号:
    10578770
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
Wireless Power Transmission System for High-Throughput Behavioral Studies on Small Freely Moving Animal Subjects
用于小型自由移动动物受试者高通量行为研究的无线电力传输系统
  • 批准号:
    10451284
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
III: Small: Moving offline learning to rank online, from theory to practice
三:小:把线下学习搬到线上排名,从理论到实践
  • 批准号:
    2128019
  • 财政年份:
    2021
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Electrically-small platform-based antennas and systems with applications in wireless communication of moving large objects
基于电气小型平台的天线和系统,应用于移动大型物体的无线通信
  • 批准号:
    558213-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Postdoctoral Fellowships
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019323
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CNS Core: Small: Moving Machine Learning into the Next-Generation Cloud Flexibly, Agilely and Efficiently
CNS核心:小:灵活、敏捷、高效地将机器学习迁移到下一代云
  • 批准号:
    2008265
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019314
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: Moving with muscles vs. springs: evolutionary biomechanics of extremely fast, small systems
合作研究:肌肉运动与弹簧运动:极快、小型系统的进化生物力学
  • 批准号:
    2019355
  • 财政年份:
    2020
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了