Anticipating Bifurcations for Identifying Dynamic Characteristics of Nonlinear Systems

预测分岔以识别非线性系统的动态特性

基本信息

项目摘要

The main goal of this research project is to create a novel method to quantitatively forecast bifurcations as well as the pre- and post-bifurcation dynamics of large dimensional nonlinear systems with a low dimensional inertial manifold. Dramatic changes in the dynamics of complex systems, from ecosystems to engineered systems, occur. Forecasting such events using advanced nonlinear techniques is of major importance. The behavior of such complex systems is commonly characterized by nonlinearities that can lead to regime shifts or bifurcations from a stable to an unstable dynamics. A method that can quantitatively predict bifurcations as well as the pre- and post-bifurcation dynamics for large dimensional nonlinear systems would have a significant impact in a variety of fields, from the analysis of nano-systems to the design of disease eradication campaigns. The three key tasks are to: (1) develop novel techniques to differentiate the dynamics along the inertial manifold from the overall dynamics and to handle noise using a robust signal processing methodology, (2) develop innovative methods to forecast stable/unstable branches of bifurcation diagrams, and (3) refine the general methods for application to complex nonlinear systems including population dynamics and aeroelastic systems. This project has broader impacts on the society at large. This effort will answer important scientific questions, and will impact applications spanning from computational dynamics to population dynamics. For example, there is an acute need for reliable methods to predict catastrophic events in populations of plants and/or animals because such events can lead to irreversible consequences such as extinction of species. The potential impact of this method is even higher when applied to disease eradication (populations of infectious diseases). While the dynamics of diseases is a very complex system and the method may not be perfect, it can prove to outperform most other methods because of its ability to filter out noise and the ability to provide forecasts without the need for an accurate model.
该研究项目的主要目标是创建一种新颖的方法来定量预测具有低维惯性流形的大维非线性系统的分岔以及分岔前后的动力学。从生态系统到工程系统,复杂系统的动力学发生了巨大的变化。使用先进的非线性技术预测此类事件非常重要。此类复杂系统的行为通常以非线性为特征,非线性可能导致从稳定动态到不稳定动态的状态转变或分岔。一种能够定量预测大维非线性系统的分岔以及分岔前和分岔后动力学的方法将在从纳米系统分析到疾病根除运动设计的各个领域产生重大影响。这三个关键任务是:(1)开发新颖的技术来区分沿惯性流形的动力学与整体动力学,并使用稳健的信号处理方法处理噪声,(2)开发创新方法来预测分岔图的稳定/不稳定分支,以及(3)完善应用于复杂非线性系统(包括总体动力学和气动弹性系统)的通用方法。该项目对整个社会产生更广泛的影响。这项工作将回答重要的科学问题,并将影响从计算动力学到群体动力学的应用。例如,迫切需要可靠的方法来预测植物和/或动物种群中的灾难性事件,因为此类事件可能导致不可逆转的后果,例如物种灭绝。当应用于根除疾病(传染病人群)时,这种方法的潜在影响甚至更大。虽然疾病动力学是一个非常复杂的系统,并且该方法可能并不完美,但它可以证明优于大多数其他方法,因为它能够过滤噪音并且能够在不需要准确模型的情况下提供预测。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bogdan Epureanu其他文献

Data-driven bifurcation analysis using parameter-dependent trajectories
  • DOI:
    10.1016/j.ijnonlinmec.2024.104937
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jesús García Pérez;Leonardo Sanches;Amin Ghadami;Guilhem Michon;Bogdan Epureanu
  • 通讯作者:
    Bogdan Epureanu
Enhancing strategic decision-making in differential games through bifurcation prediction
  • DOI:
    10.1038/s41598-024-75848-6
  • 发表时间:
    2024-11-22
  • 期刊:
  • 影响因子:
    3.900
  • 作者:
    Jesús García Pérez;Bogdan Epureanu
  • 通讯作者:
    Bogdan Epureanu
Contact model identification for friction ring dampers in blisks with reduced order modeling
  • DOI:
    10.1016/j.ijnonlinmec.2019.103374
  • 发表时间:
    2020-04-01
  • 期刊:
  • 影响因子:
  • 作者:
    Seunghun Baek;Bogdan Epureanu
  • 通讯作者:
    Bogdan Epureanu

Bogdan Epureanu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bogdan Epureanu', 18)}}的其他基金

Complex Bio-Nano-Dynamics of Motor Proteins in Dynamically Controlled Fluids
动态控制流体中运动蛋白的复杂生物纳米动力学
  • 批准号:
    1161874
  • 财政年份:
    2012
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Cooperative Nonlinear Dynamics of Motor Proteins
运动蛋白的协同非线性动力学
  • 批准号:
    0800202
  • 财政年份:
    2008
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Micro-Fluid-Structural Sensing Based on Sensitivity Vector Fields and Morphing Modes Created by Nonlinear Feedback Excitation
基于非线性反馈激励产生的灵敏度矢量场和变形模式的微流结构传感
  • 批准号:
    0625011
  • 财政年份:
    2006
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
CAREER: Next-Generation High-Sensitivity Damage Detection and Sensing Based on Enhancing Nonlinear Dynamics and Phase Space Pattern Recognition
职业:基于增强非线性动力学和相空间模式识别的下一代高灵敏度损伤检测和传感
  • 批准号:
    0347327
  • 财政年份:
    2004
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant

相似海外基金

Toward an automated analysis of bifurcations of dynamical systems
动力系统分岔的自动分析
  • 批准号:
    23K17657
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Arctic sea ice and bifurcations in a hierarchy of simplemodels (tentative)
简单模型层次结构中的北极海冰和分叉(暂定)
  • 批准号:
    2277781
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Studentship
Bifurcations in Complex Algebraic Dynamics
复杂代数动力学中的分岔
  • 批准号:
    2246630
  • 财政年份:
    2023
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Bifurcations of random dynamical systems with bounded noise
具有有限噪声的随机动力系统的分岔
  • 批准号:
    EP/W009455/1
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Towards universality of delayed and quickened bifurcations in biological signalling
迈向生物信号传导中延迟和加速分歧的普遍性
  • 批准号:
    EP/W032317/1
  • 财政年份:
    2022
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Research Grant
Patterns and Bifurcations in Multiple Timescale Dynamical Systems
多时间尺度动力系统中的模式和分岔
  • 批准号:
    2204758
  • 财政年份:
    2021
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Continuing Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2021
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Discovery Grants Program - Individual
Stability and Bifurcations in Free-Boundary Models of Active Gels
活性凝胶自由边界模型的稳定性和分岔
  • 批准号:
    2005262
  • 财政年份:
    2020
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Engineering Bifurcations in High-Dimensional Dynamical Systems Using Isostable Reduction Methods
使用等稳定约简方法在高维动力系统中设计分岔
  • 批准号:
    1933583
  • 财政年份:
    2020
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Standard Grant
Bifurcations: functional differential equations and waves in inhomogeneous media
分岔:非均匀介质中的泛函微分方程和波
  • 批准号:
    RGPIN-2016-04318
  • 财政年份:
    2019
  • 资助金额:
    $ 32.53万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了