DMREF: Simulation-Driven Design of Highly Efficient MOF/Nanoparticle Hybrid Catalyst Materials
DMREF:高效 MOF/纳米颗粒杂化催化剂材料的仿真驱动设计
基本信息
- 批准号:1334928
- 负责人:
- 金额:$ 120万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
****Technical Abstract***This project seeks to exploit recent advances in synthesizing nanoporous materials via a building-block approach to conceive, synthesize, characterize, and test new heterogeneous catalysts that exhibit enzyme-like control in demanding chemical transformations. Catalytically active metal nanoparticles will be encapsulated within metal-organic framework (MOF) crystals. MOFs are nanoporous materials synthesized in a building-block approach from metal nodes and organic linkers. Enshrouding metal nanoparticles within MOFs prevents their agglomeration and allows control over reactant access to their surfaces. Molecular-level modeling will guide the selection and synthesis of appropriate metal surfaces and MOF channels for an important class of reactions. The objectives of this project are 1) to develop new ways of synthesizing heterogeneous catalyst materials with structural control ranging from the atomic level to the particle level and 2) to demonstrate how new levels of synthetic control, combined with predictive molecular-level modeling, can drastically decrease the development time of new catalytic materials. Through this combination of modeling and experiment, the project aims to develop a fundamental understanding of the role that the MOF layer plays in defining and modulating the catalytic behavior of nanoparticles. The result should be a class of catalysts that are both highly active and selective. The proposed research will serve as an excellent training platform for undergraduates, graduate students and a postdoctoral fellow in the critical frontier of structure-based catalyst design. Web-based education and outreach activities will reach a wider audience.****Non-Technical Abstract****Catalysis is the science and engineering of making chemical reactions go faster and more selectively toward the desired products. Catalysis is a fundamental technology for our country's manufacturing base, and recent advances in nanotechnology, computational power, and our theoretical understanding of catalytic reactions create tremendous opportunities to improve catalysis, producing both economic and environmental benefits. This project aims to design new catalysts for an important class of chemical reactions known as selective oxidation. Catalytically active metal nanoparticles will be encapsulated within metal-organic framework (MOF) crystals. Enshrouding metal nanoparticles within MOFs prevents their agglomeration and allows control over reactant access to their surfaces. However, there are an enormous number of metal nanoparticle and MOF types that could be chosen. Molecular-level modeling will, therefore, guide the selection and synthesis of appropriate metal surfaces and MOF channels so that the resulting materials have the desired properties. The objectives of this project are 1) to develop new ways of synthesizing heterogeneous catalyst materials with structural control ranging from the atomic level to the particle level and 2) to demonstrate how new levels of synthetic control, combined with predictive molecular-level modeling, can drastically decrease the development time of new catalytic materials.
* 技术摘要 * 本项目旨在利用最新进展,通过构建块的方法来合成纳米多孔材料,构思,合成,表征和测试新的非均相催化剂,在要求严格的化学转化中表现出酶样控制。催化活性金属纳米颗粒将被封装在金属有机骨架(MOF)晶体内。MOFs是由金属节点和有机连接体以积木方式合成的纳米多孔材料。将金属纳米颗粒包裹在MOF内防止其团聚并允许控制反应物进入其表面。分子水平的建模将指导选择和合成合适的金属表面和MOF通道的一类重要的反应。该项目的目标是:1)开发合成非均相催化剂材料的新方法,其结构控制范围从原子水平到颗粒水平; 2)展示新水平的合成控制如何与预测分子水平建模相结合,可以大大减少新催化材料的开发时间。通过这种建模和实验的结合,该项目旨在对MOF层在定义和调节纳米颗粒的催化行为中所起的作用有一个基本的了解。其结果应该是一类既具有高活性又具有高选择性的催化剂。拟议的研究将作为一个很好的培训平台,本科生,研究生和博士后研究员在关键前沿的结构为基础的催化剂设计。网络教育和外联活动将覆盖更广泛的受众。催化是使化学反应更快,更有选择性地朝着所需产物进行的科学和工程。 催化是我国制造业的基础技术,纳米技术、计算能力和我们对催化反应的理论理解的最新进展为改善催化创造了巨大的机会,产生了经济和环境效益。 该项目旨在为一类重要的化学反应(称为选择性氧化)设计新的催化剂。 催化活性金属纳米颗粒将被封装在金属有机骨架(MOF)晶体内。将金属纳米颗粒包裹在MOF内防止其团聚并允许控制反应物进入其表面。 然而,可以选择大量的金属纳米颗粒和MOF类型。 因此,分子水平的建模将指导适当的金属表面和MOF通道的选择和合成,以便所得材料具有所需的特性。该项目的目标是:1)开发合成非均相催化剂材料的新方法,其结构控制范围从原子水平到颗粒水平; 2)展示新水平的合成控制如何与预测分子水平建模相结合,可以大大减少新催化材料的开发时间。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Randall Snurr其他文献
Putting the squeeze on hydrogen
挤压氢气
- DOI:
10.1038/nchem.345 - 发表时间:
2009-09-01 - 期刊:
- 影响因子:20.200
- 作者:
Randall Snurr - 通讯作者:
Randall Snurr
Randall Snurr的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Randall Snurr', 18)}}的其他基金
Collaborative Research: DMREF: GOALI: Discovering Materials for CO2 Capture in the Presence of Water via Integrated Experiment, Modeling, and Theory
合作研究:DMREF:GOALI:通过综合实验、建模和理论发现有水时捕获二氧化碳的材料
- 批准号:
2119433 - 财政年份:2021
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Participant Support for Foundations of Molecular Modeling and Simulation: Molecular Modeling and the Materials Genome (FOMMS 2015); Welches, Oregon, on July 12-15, 2015
分子建模和模拟基础的参与者支持:分子建模和材料基因组(FOMMS 2015);
- 批准号:
1513429 - 财政年份:2015
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
SusChem: High-throughput Computational Discovery of New Nanoporous Materials for Energy Storage
SusChem:用于储能的新型纳米多孔材料的高通量计算发现
- 批准号:
1308799 - 财政年份:2013
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
NIRT: Design of Nanoporous Materials for Enantioselective Single-Site Catalysis and Separations
NIRT:用于对映选择性单中心催化和分离的纳米多孔材料的设计
- 批准号:
0507013 - 财政年份:2005
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
GOALI: Molecular Engineering of Mass Transport in Nanoporous Materials
目标:纳米多孔材料中传质的分子工程
- 批准号:
0302428 - 财政年份:2003
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
NIRT: Design of Nanoporous Molecular Square Catalysts using Multiscale Modeling
NIRT:使用多尺度建模设计纳米多孔分子方形催化剂
- 批准号:
0102612 - 财政年份:2001
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
CAREER: Modeling in Chemical Engineering Research and Education
职业:化学工程研究和教育建模
- 批准号:
9733268 - 财政年份:1998
- 资助金额:
$ 120万 - 项目类别:
Continuing Grant
Engineering Research Equipment: Pulsed Field Gradient NMR Diffusion Measurements
工程研究设备:脉冲场梯度核磁共振扩散测量
- 批准号:
9610317 - 财政年份:1997
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
相似国自然基金
Simulation and certification of the ground state of many-body systems on quantum simulators
- 批准号:
- 批准年份:2020
- 资助金额:40 万元
- 项目类别:
相似海外基金
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341994 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Collaborative Research: Material Simulation-driven Electrolyte Designs in Intermediate-temperature Na-K / S Batteries for Long-duration Energy Storage
合作研究:用于长期储能的中温Na-K / S电池中材料模拟驱动的电解质设计
- 批准号:
2341995 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
Hybrid Analytical and Data-Driven Models for Integrated Simulation and Design of Complex High Frequency Multi-Winding Magnetic Components
用于复杂高频多绕组磁性元件集成仿真和设计的混合分析和数据驱动模型
- 批准号:
2344664 - 财政年份:2024
- 资助金额:
$ 120万 - 项目类别:
Standard Grant
A Study for Sketch-Driven Fluid Simulation in Computer Graphics
计算机图形学中草图驱动流体模拟的研究
- 批准号:
23K18514 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Versatile Strength Evaluation of CFRP Based on an Automated Data-Driven Numerical Simulation Platform
基于自动化数据驱动数值模拟平台的 CFRP 多功能强度评估
- 批准号:
23K16891 - 财政年份:2023
- 资助金额:
$ 120万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ENVIA - Simulation environment for AI-driven vehicles
ENVIA - 人工智能驱动车辆的仿真环境
- 批准号:
576498-2022 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Alliance Grants
An AI Data-driven simulation framework for an electric transit system and its integration with the power distribution network
人工智能数据驱动的电动交通系统仿真框架及其与配电网络的集成
- 批准号:
575639-2022 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Alliance Grants
Function-driven design and simulation methods for hierarchical multi-material structures fabricated via additive manufacturing processes
通过增材制造工艺制造的分层多材料结构的功能驱动设计和仿真方法
- 批准号:
RGPIN-2018-05971 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Discovery Grants Program - Individual
Simulation-Driven Graphics and Fabrication
仿真驱动的图形和制造
- 批准号:
CRC-2021-00227 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Canada Research Chairs
CDS&E: Simulation- and Data-driven Peptide Antibody Design Targeting RBD and non-RBD Epitopes of SARS-CoV-2 Spike Protein
CDS
- 批准号:
2152853 - 财政年份:2022
- 资助金额:
$ 120万 - 项目类别:
Standard Grant