Ultrasonic particle scrubbing with drops.
超声波颗粒用液滴擦洗。
基本信息
- 批准号:1336632
- 负责人:
- 金额:$ 22.15万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2016-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1336632PI: Saylor This project is an investigation of how ultrasonics and sprays can be used together to improve the scavenging of micron-scale particles. Sprays are widely used to reduce the level of particles in air in applications such as pollution control and dust control in mines. However micron scale particles are very difficult to remove from the air using sprays, and so significant levels of these micron scale particles exist even when sprays are vigorously implemented. An acoustic radiation force exists whenever a sound wave interacts with an object. In this work the acoustic radiation force from ultrasonic waves is used to force particles and drops to come into contact with each other thereby scavenging, or removing, these particles from the air. The goal is to cause greater scavenging of micron-scale particles than would have existed without the use of ultrasonics. Several theories for the acoustic radiation force exist, however there are significant disagreements between these theories. This is a significant issue, since without a theory, any attempts to improve the scavenging of particles using acoustics will be forced to rely on a time-consuming trial and error approach. Accordingly, the first step in this project is to experimentally validate and correct a theory. This will be a significant result in and of itself. This result will also be used to guide further experimentation in this project to show how to best improve scavenging of micron-scale particles by sprays using ultrasonics. An especially important goal of this project will be to determine if the acoustic radiation force should be configured to act on both particles and drops, forcing them into a small region, thereby increasing the scavenging of particles, or alternatively (or in addition), to use the acoustic radiation force to make the particles combine with each other, causing them to more easily be removed. Particles that are on the order of one micron in size (about one-fiftieth of the diameter of a human hair) are very dangerous to the pulmonary health of human beings. This is of concern for two reasons. Firstly, particles in this range are very difficult for the human body to reject. Particles larger than a micron tend to be blocked in the pharynx and upper respiratory system, while particles much smaller than a micron may be exhaled after entering the lung. However, particles that are about one micron in in size tend to make it all the way into the alveolar region of our lung, and then stay there. Water sprays are often used to help eliminate particles from the air. For example, devices called wet scrubbers are used in smokestacks to reduce the level of particulate pollutants. However, due to technical reasons, water sprays are not very good at eliminating particles that have a size on the order of a micron, leading to the second point of concern which is that sprays are good at removing particles that are much larger than or much smaller than a micron, but not those on the order of a micron. Hence, micron size particles can cause lung damage, and sprays are not very good at keeping them out of the air that we breathe. In this project, ultrasonic sound waves (acoustic energy just outside of the range of human hearing) are being used to improve the ability of sprays do remove particles from the air. By using high intensity ultrasound, particles and spray drops can be pushed into close proximity to each other, enabling the drops to remove the dangerous particles in a way that would not otherwise occur. The potential importance of this work is that it may be implemented in smoke stacks, automobile and truck exhaust systems, the cabs of mining vehicles, and in underground mines. In this way, the technology developed in this project may be used to reduce the level of particles in the air, thereby reducing the incidence of lung ailments such as asthma, lung cancer and COPD.
1336632PI:Saylor 该项目研究如何结合使用超声波和喷雾来改善微米级颗粒的清除。 喷雾剂广泛用于减少空气中的颗粒物水平,例如矿山污染控制和粉尘控制等。 然而,使用喷雾很难从空气中去除微米级颗粒,因此即使大力实施喷雾,这些微米级颗粒仍然存在大量。 每当声波与物体相互作用时,就会存在声辐射力。 在这项工作中,超声波的声辐射力用于迫使颗粒和液滴相互接触,从而清除或去除空气中的这些颗粒。 其目标是比不使用超声波时更有效地清除微米级颗粒。 存在几种关于声辐射力的理论,但是这些理论之间存在显着的分歧。 这是一个重要的问题,因为如果没有理论,任何利用声学改进粒子清除的尝试都将被迫依赖于耗时的试错方法。 因此,该项目的第一步是通过实验验证和纠正理论。 这本身将是一个重大结果。 该结果还将用于指导该项目的进一步实验,以展示如何通过超声波喷雾最好地改善微米级颗粒的清除。 该项目的一个特别重要的目标是确定声辐射力是否应该配置为作用于颗粒和液滴,迫使它们进入一个小区域,从而增加颗粒的清除,或者替代地(或另外),使用声辐射力使颗粒彼此结合,使它们更容易被去除。尺寸为一微米(约为人类头发直径的五十分之一)的颗粒对人类的肺部健康非常危险。 这令人担忧有两个原因。 首先,人体很难排斥这个范围内的颗粒物。 大于一微米的颗粒物往往会被阻塞在咽部和上呼吸系统中,而小于一微米的颗粒物可能会在进入肺部后被呼出。 然而,尺寸约为一微米的颗粒往往会一直进入我们肺部的肺泡区域,然后停留在那里。 通常使用喷水来帮助消除空气中的颗粒。 例如,烟囱中使用称为湿式洗涤器的设备来减少颗粒污染物的水平。 但由于技术原因,水喷雾对于微米级尺寸的颗粒物去除效果不是很好,这就导致了第二个值得关注的问题,即喷雾剂只能去除远大于或远小于微米的颗粒物,但不能去除微米量级的颗粒物。 因此,微米大小的颗粒会导致肺部损伤,而喷雾剂并不能很好地将它们排除在我们呼吸的空气之外。 在这个项目中,超声波(人类听觉范围之外的声能)被用来提高喷雾去除空气中颗粒的能力。 通过使用高强度超声波,颗粒和喷雾液滴可以被推得彼此非常接近,从而使液滴能够以一种否则不会发生的方式去除危险颗粒。 这项工作的潜在重要性在于它可以在烟囱、汽车和卡车排气系统、矿用车辆的驾驶室以及地下矿井中实施。 这样,该项目开发的技术可用于降低空气中的颗粒物水平,从而减少哮喘、肺癌和慢性阻塞性肺病等肺部疾病的发病率。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Saylor其他文献
John Saylor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Saylor', 18)}}的其他基金
Methods for improved size resolution for particle impactors
提高粒子撞击器尺寸分辨率的方法
- 批准号:
1804304 - 财政年份:2018
- 资助金额:
$ 22.15万 - 项目类别:
Standard Grant
Mixed Convection Gas Transfer across Surfactant-Contaminated Air/Water Interfaces
跨表面活性剂污染的空气/水界面的混合对流气体传输
- 批准号:
0500155 - 财政年份:2005
- 资助金额:
$ 22.15万 - 项目类别:
Standard Grant
Demonstration of the Performance Characteristics of the Rain Imaging System (RIS)
雨成像系统 (RIS) 性能特征演示
- 批准号:
0240149 - 财政年份:2003
- 资助金额:
$ 22.15万 - 项目类别:
Continuing Grant
Kinematic Models for Design Digital Library (K-MODDL)
设计数字图书馆运动学模型 (K-MODDL)
- 批准号:
0226238 - 财政年份:2002
- 资助金额:
$ 22.15万 - 项目类别:
Standard Grant
相似国自然基金
环形等离子体中的离子漂移波不稳定性和湍流的保结构Particle-in-Cell模拟
- 批准号:11905220
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
高效率单细胞分析微流控芯片的机理研究
- 批准号:31970754
- 批准年份:2019
- 资助金额:58.0 万元
- 项目类别:面上项目
酵母RNase MRP的结构及催化机制研究
- 批准号:31900929
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于多禁带光子晶体微球构建"Array on One Particle"传感体系
- 批准号:21902147
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
微流控技术构筑分子型胶体光子晶体微珠及其在光催化领域的应用研究
- 批准号:21703197
- 批准年份:2017
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
引入昆虫复视机制的粒子滤波算法及其视觉伺服应用研究
- 批准号:61175096
- 批准年份:2011
- 资助金额:58.0 万元
- 项目类别:面上项目
电子聚焦电场增强等离子体离子注入/沉积基本理论研究
- 批准号:11075012
- 批准年份:2010
- 资助金额:48.0 万元
- 项目类别:面上项目
微复型过程中聚合物流动填充机理的可视化实验分析
- 批准号:50975227
- 批准年份:2009
- 资助金额:38.0 万元
- 项目类别:面上项目
空气污染(主要是diesel exhaust particle,DEP)和支气管哮喘关系的研究
- 批准号:30560052
- 批准年份:2005
- 资助金额:20.0 万元
- 项目类别:地区科学基金项目
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Training Grant
Collaborative Research: Laboratory Measurements of Oxygen (O) and Nitrogen (N2) Ultraviolet (UV) Cross Sections by Particle Impact for Remote Sensing of Thermosphere O/N2 Variation
合作研究:通过粒子撞击实验室测量氧气 (O) 和氮气 (N2) 紫外线 (UV) 截面,以遥感热层 O/N2 变化
- 批准号:
2334619 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Standard Grant
Collaborative Research: Humidity and Temperature Effects on Phase Separation and Particle Morphology in Internally Mixed Organic-Inorganic Aerosol
合作研究:湿度和温度对内部混合有机-无机气溶胶中相分离和颗粒形态的影响
- 批准号:
2412046 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Standard Grant
Do fine-scale water column structure and particle aggregations favor gelatinous-dominated food webs in subtropical continental shelf environments?
细尺度水柱结构和颗粒聚集是否有利于亚热带大陆架环境中以凝胶状为主的食物网?
- 批准号:
2244690 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Standard Grant
CAREER: Statistical foundations of particle tracking and trajectory inference
职业:粒子跟踪和轨迹推断的统计基础
- 批准号:
2339829 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Continuing Grant
CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
- 批准号:
2340762 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Continuing Grant
A novel precision-engineered microfluidic chip for wear particle research
一种用于磨损颗粒研究的新型精密设计微流控芯片
- 批准号:
DP240102971 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Discovery Projects
Influence of RNA on icosahedral virus particle structure
RNA对二十面体病毒颗粒结构的影响
- 批准号:
BB/Y005732/1 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Research Grant
Particle classification and identification in cryoET of crowded cellular environments
拥挤细胞环境中 CryoET 中的颗粒分类和识别
- 批准号:
BB/Y514007/1 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Research Grant
Application of the virus-like particle (VLP) technology in the development of anti-tick vaccine, utilizing novel salivary proteins from Haemaphysalis longicornis ticks.
利用长角血蜱的新型唾液蛋白,应用病毒样颗粒(VLP)技术开发抗蜱疫苗。
- 批准号:
24K18027 - 财政年份:2024
- 资助金额:
$ 22.15万 - 项目类别:
Grant-in-Aid for Early-Career Scientists