MRI: Development of a Multi-function Airborne Raman Lidar for Atmospheric Process Studies
MRI:开发用于大气过程研究的多功能机载拉曼激光雷达
基本信息
- 批准号:1337599
- 负责人:
- 金额:$ 120.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2013
- 资助国家:美国
- 起止时间:2013-09-01 至 2017-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award is for development of a Multi-function Airborne Raman Lidar (MARL). The project will extend mature ground-based Raman lidar technology to airborne weather research applications. The major intellectual challenge is to design the system so as to provide high quality measurements in the technically challenging airborne environment, which will require reducing system power, size and weight and increasing tolerance to vibration. The state-of-the-art mechanical/optical design and analysis, which has previously been tested for both NSF-sponsored Univ. of Wyoming King Air (UWKA) and NASA-sponsored airborne systems, will be used to integrate laser, electro-optical, and other sensors to produce a reliable airborne system. One important design feature is planned capability for dual-wavelength water vapor Raman measurements over a large range of solar atmospheric conditions. MARL will provide simultaneous measurements of temperature, water vapor mixing ratio, aerosol and/or cloud extinction coefficient and depolarization ratio, and cloud water content profiles with high horizontal and vertical resolutions when operated aboard either the UWKA or NSF/NCAR C-130 research aircraft platforms. MARL will fill several instrumentation gaps identified by previous NSF-sponsored Lower Atmospheric Observing Facilities (LAOF) workshops and will transform our capability to observe the atmosphere at horizontal resolutions ranging from ~100m to ~1 km. The intellectual merit also rests in scientific contributions from planned deployments of this instrument, including improved understanding of small-scale interactions between clouds and their environments, air-sea and land-atmosphere interactions, boundary layer structure and processes under cloudy conditions or over heterogeneous surfaces, mesoscale atmospheric environments and dynamics (especially those related to convective initiation), and both transport and dispersion of aerosols and/or pollutants in the near-surface boundary layer. Several field projects are planned to use MARL to address important atmospheric processes, all with the goal to improve our ability to improve weather, climate and air quality forecasts.There are broader impacts from enhancing community measurement infrastructure. Once MARL has been completed and successfully demonstrated, it will be available to external users on the UWKA and NSF/NCAR C-130. The synergy of MARL with other LAOF instruments will allow NSF-supported researchers to address science questions that are limited by current observational capabilities, thereby opening numerous opportunities for new discoveries in atmospheric science. There are important societal broader impacts from the scientific measurements possible with MARL. Fine scale measurements of water vapor and temperature by MARL will significantly advance our understanding of processes controlling mesoscale dynamics and associated cloud and precipitation development toward better prediction of high impact weather events. Other process studies will improve cloud and ABL parameterizations for better climate and air quality prediction. Furthermore, exceptional opportunities for graduate and undergraduate education and training will arise from this project. While one graduate student is included specifically, all graduate students in the research group will participate to some extent in instrument development and testing. The lidar system will be incorporated into the Atmospheric Instrumentation course offered at the University of Wyoming to provide students with hands-on experience using state-of-the-art atmospheric remote sensing capabilities. The availability of the instrumentation to the wider atmospheric science community will greatly increase the number and diversity of students utilizing this equipment.
该奖项是为了开发多功能机载拉曼激光雷达(MARL)。 该项目将将成熟的地面拉曼激光雷达技术扩展到机载天气研究应用程序。 主要的智力挑战是设计系统,以便在技术挑战性的空降环境中提供高质量的测量,这将需要降低系统功率,大小和重量,并增加对振动的容忍度。 先前已经对两个NSF赞助的大学进行了测试的最先进的机械/光学设计和分析。 Wyoming King Air(UWKA)和NASA赞助的机载系统将用于整合激光,电光和其他传感器,以生成可靠的机载系统。 一个重要的设计功能是在各种太阳大气条件下进行双波长水蒸气拉曼测量的计划功能。 MARL将同时测量温度,水蒸气混合比,气溶胶和/或云消光系数和去极化比,以及在UWKA或NSF/NCAR/NCAR C-130研究飞机平台上运行时,具有高水平和垂直分辨率的云水含量分布。 MARL将填补以前的NSF赞助的低大气观测设施(LAOF)研讨会所确定的几个仪器间隔,并将改变我们观察到范围约100m至〜1 km的水平分辨率下的大气的能力。 智力优点还取决于该乐器计划部署的科学贡献,包括对云及其环境之间的小规模相互作用的了解,空气和土地大气相互作用,云状条件下的边界层结构和过程,或超过异质表面的边界层结构和过程,以及与中等范围的环境和动态(均与启动的启动和动态),以及启动或动态的启动和动态),以及启动的启动和动态)近表面边界层。 计划使用MARL来解决重要的大气过程,所有目标都以提高我们改善天气,气候和空气质量预测的能力。增强社区测量基础设施的影响更大。 MAL完成并成功地证明MAL后,它将向UWKA和NSF/NCAR C-130上的外部用户使用。 MARL与其他LAOF工具的协同作用将使由NSF支持的研究人员解决受当前观察能力限制的科学问题,从而为大气科学的新发现打开了许多机会。 MAR的科学测量可能会产生重要的社会广泛影响。通过MAL对水蒸气和温度进行的精细规模测量将大大提高我们对控制中尺度动力学以及相关云的过程的理解,以及降水的发展,以更好地预测高影响力天气事件。其他过程研究将改善云和ABL参数化,以更好地气候和空气质量预测。此外,研究生和本科教育和培训的特殊机会将来自该项目。特别是一名研究生,但研究小组的所有研究生将在某种程度上参与仪器开发和测试。 LIDAR系统将被合并到怀俄明大学提供的大气仪器课程中,以使用最先进的大气遥感能力为学生提供动手体验。仪器对更广泛的大气科学界的可用性将大大增加利用该设备的学生的数量和多样性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Zhien Wang其他文献
Anvil Productivities of Tropical Deep Convective Clusters and Their Regional Differences
热带深对流星团的砧生产力及其区域差异
- DOI:
10.1175/jas-d-15-0239.1 - 发表时间:
2016 - 期刊:
- 影响因子:3.1
- 作者:
M. Deng;G. Mace;Zhien Wang - 通讯作者:
Zhien Wang
LIDAR and RADAR Observations
激光雷达和雷达观测
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
J. Pelon;G. Vali;G. Ancellet;G. Ehret;P. Flamant;S. Haimov;G. Heymsfield;D. Leon;J. Mead;A. Pazmany;A. Protat;Zhien Wang;M. Wolde - 通讯作者:
M. Wolde
Improved tropical deep convective cloud detection using MODIS observations with an active sensor trained machine learning algorithm
使用 MODIS 观测和主动传感器训练的机器学习算法改进热带深对流云检测
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:13.5
- 作者:
Kang Yang;Zhien Wang;M. Deng;Brennan Dettmann - 通讯作者:
Brennan Dettmann
Association of Antarctic polar stratospheric cloud formation on tropospheric cloud systems
南极极地平流层云形成与对流层云系统的关联
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
Zhien Wang;G. Stephens;T. Deshler;C. Trepte;T. Parish;D. Vane;D. Winker;Dong Liu;L. Adhikari - 通讯作者:
L. Adhikari
The Water Cycle across Scales
跨尺度的水循环
- DOI:
10.1175/bams-86-12-1743 - 发表时间:
2005 - 期刊:
- 影响因子:8
- 作者:
D. Gochis;B. Anderson;A. Barros;A. Gettelman;Junhong Wang;J. Braun;W. Cantrell;Yangruixue Chen;N. Fox;B. Geerts;W. Han;M. Herzog;P. Kucera;R. Kursinski;A. Laing;Changhai Liu;E. Maloney;S. Margulis;D. Schultz;S. Sherwood;A. Sobel;H. Vömel;Zhien Wang - 通讯作者:
Zhien Wang
Zhien Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Zhien Wang', 18)}}的其他基金
CAESAR: Characterizing and Understanding Atmospheric Boundary Layer Fluxes, Structure and Cloud Property Evolution in Arctic Cold Air Outbreaks
CAESAR:描述和理解北极冷空气爆发时的大气边界层通量、结构和云特性演化
- 批准号:
2151075 - 财政年份:2023
- 资助金额:
$ 120.4万 - 项目类别:
Continuing Grant
Collaborative Research: Sundowner Winds EXperiment (SWEX) in Santa Barbara, California
合作研究:加利福尼亚州圣巴巴拉的日落风实验 (SWEX)
- 批准号:
1921596 - 财政年份:2020
- 资助金额:
$ 120.4万 - 项目类别:
Standard Grant
Collaborative Research: Observing and Understanding Planetary Boundary Layer (PBL) Heterogeneities and Their Impacts on Tornadic Storms during VORTEX-SE 2018 Field Experiment
合作研究:在 VORTEX-SE 2018 现场实验期间观察和理解行星边界层 (PBL) 异质性及其对龙卷风暴的影响
- 批准号:
1917693 - 财政年份:2019
- 资助金额:
$ 120.4万 - 项目类别:
Standard Grant
Exploiting Synergies between Remote Sensing and in Situ Measurements during ICE-T to Better Understand Ice Generation in Tropical Clouds
利用 ICE-T 期间遥感和现场测量之间的协同作用,更好地了解热带云中的冰生成
- 批准号:
1034858 - 财政年份:2011
- 资助金额:
$ 120.4万 - 项目类别:
Continuing Grant
Collaborative Research: Colorado Airborne Multi-Phase Cloud Study (CAMPS)
合作研究:科罗拉多机载多相云研究 (CAMPS)
- 批准号:
0964184 - 财政年份:2010
- 资助金额:
$ 120.4万 - 项目类别:
Continuing Grant
CAREER: Developing New Airborne Cloud, Aerosol and Water Vapor Observation Capabilities by Synergizing Remote Sensors and in Situ Probes on the University of Wyoming King Air
职业:通过协同怀俄明大学国王航空的远程传感器和原位探测器开发新的机载云、气溶胶和水蒸气观测能力
- 批准号:
0645644 - 财政年份:2007
- 资助金额:
$ 120.4万 - 项目类别:
Continuing Grant
相似国自然基金
TRIM15介导的Axin1多聚化调控在Wnt信号和结直肠癌发生发展中的作用及机制研究
- 批准号:32370749
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
数智化视域下多族群地区文化旅游产业高质量发展的机理与路径研究
- 批准号:72364010
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
战略与管理研究类:综合立体交通多网融合领域学科发展战略研究
- 批准号:52342202
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
新生期多胺代谢紊乱参与ARDS疾病发生发展的机制研究
- 批准号:82301963
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
江苏典型乡村转型发展的动态过程与驱动机理研究:融合多尺度治理的新内生发展视角
- 批准号:42371205
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 120.4万 - 项目类别:
Hyperpolarized 129Xe MRI to identify structural determinants of low lung function and respiratory symptoms in young adults from the Lung Health Cohort
超极化 129Xe MRI 用于识别肺健康队列中年轻人低肺功能和呼吸道症状的结构决定因素
- 批准号:
10639640 - 财政年份:2023
- 资助金额:
$ 120.4万 - 项目类别:
User-friendly Analysis Platform for Decentralized Multi-site Diffusion MRI Studies
用于分散式多站点扩散 MRI 研究的用户友好分析平台
- 批准号:
10724720 - 财政年份:2023
- 资助金额:
$ 120.4万 - 项目类别:
MR Fingerprinting based Quantitative Imaging and Analysis Platform (MRF-QIA) for brain tumors.
基于 MR 指纹的脑肿瘤定量成像和分析平台 (MRF-QIA)。
- 批准号:
10593584 - 财政年份:2023
- 资助金额:
$ 120.4万 - 项目类别:
Development and Evaluation of Advanced Non-Contrast Perfusion MRI for Monitoring Treatment Response in Brain Metastases
用于监测脑转移治疗反应的先进非对比灌注 MRI 的开发和评估
- 批准号:
10716949 - 财政年份:2023
- 资助金额:
$ 120.4万 - 项目类别: