EAGER: Fabrication of self-powered scaffolds for enhanced bone repair

EAGER:制造自供电支架以增强骨修复

基本信息

  • 批准号:
    1347130
  • 负责人:
  • 金额:
    $ 23.67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2013
  • 资助国家:
    美国
  • 起止时间:
    2013-09-01 至 2018-08-31
  • 项目状态:
    已结题

项目摘要

PI: Mei WeiProposal ID: 1347130More than 1.3 million bone-repair procedures are conducted every year in the USA, which constitutes a large proportion of the medical bills of the society. Despite of the huge demand in bone grafting materials, many currently available grafting materials still exhibit poor efficiency in bone regeneration. Thus, there is a pressing need for the development of new grafting materials aimed at faster and better bone regeneration. In this study, we propose to fabricate self-powered scaffolds with good biodegradability, excellent osteoconductivitiy and osteoinductivitiy, and capable of inducing in-situ DC electric stimulation. The specific aims of the study are:(1) Fabrication of biodegradable scaffolds capable of generating in-situ DC electric field with controlled electric current direction; and (2) Evaluations of the in vitro cell-nanobattery incorporated-scaffolds interactions, and determine the optimum nanobattery loading for stimulating cell activities without resulting in toxic effects.Intellectual Merit: The proposed research is highly innovative across fields of tissue engineering, nanotechnology, electrochemistry, developmental biology, and orthopedics, which explores a completely new approach for better and faster bone repair and regeneration. Its intellectual merits can be summarized into the following two aspects: (1) The fabrication of self-powered scaffolds for in situ generation of DC electric field to stimulate osteoprogenitor activities; (2) Alignment of nanobatteries in the apatite/collagen scaffold via dielectrophoresis; (3) The employment of a 4-D imaging platform for real-time observation of the interactions between nanobattery and GFP-labeled cells to elucidate mechanisms of electric stimulation on osteoblastic cells. It is for the first time that self-powered electrical stimulation is used in conjunction with tissue engineering scaffold to produce early and high-quality new bone formation.Broader Impacts: The proposed application explores a completely new approach to apply in situ DC electric stimulation to bone tissue engineering. The successful implementation of the proposed study will address directly the existing problems of bone tissue engineering scaffolds, such as poor osteoconductivity, lack of osteoinductivity, and slow bone healing. Its approach may also provide an effective solution to non-union and delayed union of bone repair in conditioned patients, such as aging, diabetics, osteoporosis patients. Thus, the proposed research will be significant and transformative to the tissue engineering field as it will result in a new generation of tissue engineering scaffold which is not only osteoconductive, but also osteoinductive with the capability of stimulating new bone formation in define areas. The strategies established here can also be used to stimulate other cells for tissue repair and regeneration other than bone, such as blood vessel, never, cartilage, etc. It is expected that the novel approach will greatly shorten the rehabilitation time of patients and thereby substantially lower medical costs associated with hospitalization, health care, etc for the society. Thus, the social and economic impact of the proposed project is invaluable. Also, this project will result in the training of two graduate students and a number of undergraduate students in areas of tissue engineering and electrochemistry, while exposing them to a multidisciplinary research environment. Efforts will be made to recruit females and minority students by integrating our research activities with existing recruiting efforts at the Departmental as well as Institutional levels. A plan is made to participate in activities organized by various professional societies dedicated to underrepresented minorities. In addition, K- 12 outreach will also be carried out to target high school students, especially females and underrepresented minorities, excited about regenerative engineering. The results obtained from the project will be disseminated broadly via publishing in scientific journals, presenting in conferences and publicizing to general public web site.
在美国,每年进行的骨修复手术超过130万例,占社会医疗费用的很大比例。尽管对骨移植材料的需求量很大,但现有的许多移植材料在骨再生方面仍然表现出较低的效率。因此,迫切需要开发新的移植材料,以期更快、更好地再生骨。在这项研究中,我们建议制备具有良好的生物降解性、良好的骨传导性和骨诱导性以及能够诱导原位直流电刺激的自给能支架。这项研究的具体目的是:(1)构建可原位产生直流电场的可生物降解支架,并控制电流方向;(2)评估体外细胞-纳米电池复合支架-支架的相互作用,确定刺激细胞活动而不会导致毒性影响的最佳纳米电池负载。智力优势:该研究跨越组织工程、纳米技术、电化学、发育生物学和骨科领域,具有很高的创新性,为更好、更快地修复和再生骨探索了一条全新的途径。它的智能优势可以概括为以下两个方面:(1)自供电支架的制备,以原位产生直流电场来刺激成骨细胞的活性;(2)通过介电泳法在磷灰石/胶原支架中对准纳米球;(3)利用4-D成像平台实时观察纳米电池与GFP标记细胞之间的相互作用,以阐明电刺激成骨细胞的机制。首次将自力式电刺激与组织工程支架相结合,产生早期高质量的新骨形成。广泛影响:该应用探索了一种将原位直流电刺激应用于骨组织工程的全新方法。这项研究的成功实施将直接解决骨组织工程支架存在的问题,如骨传导性差、缺乏骨诱导能力、骨愈合缓慢等。它的方法也可能为老年、糖尿病、骨质疏松症等条件患者的骨修复不愈合和延迟愈合提供有效的解决方案。因此,这项研究对组织工程领域具有重要的意义和变革意义,因为它将产生新一代组织工程支架,它不仅具有骨传导性,而且具有骨诱导性,能够在一定范围内刺激新骨形成。这里建立的策略也可以用来刺激骨以外的其他细胞进行组织修复和再生,如血管、神经、软骨等。预计这种新方法将大大缩短患者的康复时间,从而大幅降低与住院、医疗保健等相关的社会医疗成本。因此,拟议项目的社会和经济影响是不可估量的。此外,该项目将在组织工程和电化学领域培训两名研究生和一些本科生,同时将他们暴露在多学科的研究环境中。我们将努力通过将我们的研究活动与现有的部门和机构一级的招聘工作结合起来,努力招募女性和少数族裔学生。制定了一项计划,参加各种专业协会为代表不足的少数群体组织的活动。此外,还将开展K-12外联活动,目标是对再生工程感到兴奋的高中生,特别是女性和代表性不足的少数族裔。该项目所取得的成果将通过在科学期刊上发表、在会议上发表以及在一般公众网站上进行宣传来广泛传播。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mei Wei其他文献

Existence of positive S-asymptotically periodic solutions of the fractional evolution equations in ordered Banach spaces
有序Banach空间中分数阶演化方程正S-渐近周期解的存在性
Properties of Structured Tensors and Complementarity Problems
结构化张量的性质和互补问题
Clinical characteristics and management of gastric outlet obstruction in acute pancreatitis
  • DOI:
    10.1016/j.pan.2020.11.010.
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Cheng Qu;Xianqiang Yu;Zehua Duan;Jing Zhou;Wenjian Mao;Mei Wei;Longxiang Cao;Jingzhu Zhang;He Zhang;Lu Ke;Zhihui Tong;Weiqin Li
  • 通讯作者:
    Weiqin Li
南岸低気圧とそれに伴う降水現象の予測可能性
南海岸气旋和相关降水现象的可预测性
Upper bounds for eigenvalues of Cauchy-Hankel tensors
Cauchy-Hankel 张量特征值的上限
  • DOI:
    10.1007/s11464-021-0890-0
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mei Wei;Yang Qingzhi
  • 通讯作者:
    Yang Qingzhi

Mei Wei的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mei Wei', 18)}}的其他基金

PFI:AIR - TT: Scale-up and Prototyping of Novel Scaffold Fabrication for Bone Regeneration
PFI:AIR - TT:用于骨再生的新型支架制造的放大和原型制作
  • 批准号:
    2002879
  • 财政年份:
    2020
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant
Symposium BM3, Biomaterials for Regenerative Medicine
研讨会 BM3,再生医学生物材料
  • 批准号:
    1638492
  • 财政年份:
    2016
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Scale-up and Prototyping of Novel Scaffold Fabrication for Bone Regeneration
PFI:AIR - TT:用于骨再生的新型支架制造的放大和原型制作
  • 批准号:
    1639914
  • 财政年份:
    2016
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant
PFI:AIR-TT: Prototyping bioabsorbable composites for bone-fixation applications involving low to medium loads
PFI:AIR-TT:用于低至中等负载骨固定应用的生物可吸收复合材料原型
  • 批准号:
    1414274
  • 财政年份:
    2014
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant
I-Corps: Novel apatite/collagen scaffolds for bone repair
I-Corps:用于骨修复的新型磷灰石/胶原支架
  • 批准号:
    1243455
  • 财政年份:
    2012
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant
Repair and regeneration of osteochondral defects in mouse articular joints
小鼠关节骨软骨缺损的修复与再生
  • 批准号:
    1133883
  • 财政年份:
    2011
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Continuing Grant
GOALI: Multi-functional composites for load-bearing skeletal applications
GOALI:用于承重骨骼应用的多功能复合材料
  • 批准号:
    0503315
  • 财政年份:
    2005
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Continuing Grant
Collaborative Research: A Novel Approach to Improve the Interfacial Strength of Hydroxyapatite Coated Implants for Orthopedic and Dental Applications
合作研究:提高骨科和牙科应用羟基磷灰石涂层植入物界面强度的新方法
  • 批准号:
    0500269
  • 财政年份:
    2005
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant

相似海外基金

Study on fabrication of composite tissue structures and evaluation of their self-organization
复合组织结构的制备及其自组织评价研究
  • 批准号:
    23K08041
  • 财政年份:
    2023
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Developing self-assembly strategies for the fabrication of well-defined and large area 2D coordination polymers
开发用于制造明确的大面积二维配位聚合物的自组装策略
  • 批准号:
    2326228
  • 财政年份:
    2023
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Continuing Grant
High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
  • 批准号:
    10744937
  • 财政年份:
    2023
  • 资助金额:
    $ 23.67万
  • 项目类别:
CAREER: Three-dimensional Nanoscale Device Fabrication via Molecular Programming and DNA-based Self-assembly
职业:通过分子编程和基于 DNA 的自组装制造三维纳米器件
  • 批准号:
    2240000
  • 财政年份:
    2023
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant
Fabrication, characterization and application of novel, highly stable, carbene-based self-assembled monolayers
新型、高度稳定的卡宾基自组装单分子层的制备、表征和应用
  • 批准号:
    RGPIN-2019-04038
  • 财政年份:
    2022
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Discovery Grants Program - Individual
Investigation of Inter Crosslinking Network Gels for Self-cleaning Surfaces using Digital Fabrication
使用数字制造研究自清洁表面的相互交联网络凝胶
  • 批准号:
    21K14040
  • 财政年份:
    2021
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Fabrication, characterization and application of novel, highly stable, carbene-based self-assembled monolayers
新型、高度稳定的卡宾基自组装单分子层的制备、表征和应用
  • 批准号:
    RGPIN-2019-04038
  • 财政年份:
    2021
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Discovery Grants Program - Individual
Fabrication of chiroptically-functionalized polymer film with 3D-nanofibrilar network formation via 2D-1D development of self-assembling system
通过自组装系统的 2D-1D 开发制造具有 3D 纳米纤维网络形成的手性光学功能化聚合物薄膜
  • 批准号:
    20H02571
  • 财政年份:
    2020
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Fabrication, characterization and application of novel, highly stable, carbene-based self-assembled monolayers
新型、高度稳定的卡宾基自组装单分子层的制备、表征和应用
  • 批准号:
    RGPIN-2019-04038
  • 财政年份:
    2020
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Discovery Grants Program - Individual
Self-Assembly of Levitating Water Droplets over Polymer Solutions for Fabrication of Microporous Structures
用于制造微孔结构的聚合物溶液上悬浮水滴的自组装
  • 批准号:
    2004830
  • 财政年份:
    2020
  • 资助金额:
    $ 23.67万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了