CAREER: Supervised Learning for Incomplete and Uncertain Data
职业:不完整和不确定数据的监督学习
基本信息
- 批准号:1350078
- 负责人:
- 金额:$ 45.41万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-05-01 至 2017-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This CAREER project will advance the state of the art in supervised machine learning to allow for incomplete, uncertain and unspecific label information. Supervised machine learning algorithms produce desired outputs for given input data by learning from example training data. The methods generally rely on completely and accurately labeled training data to drive the learning algorithm. However, many applications are plagued with labels that are incomplete, uncertain, and unspecific (lack precision). Current techniques do not adequately handle such data.For example, analysis of satellite imagery to identify the content of each pixel is often conducted by coupling unsupervised learning methods (that do not rely on labeled training data) with manual exploration. This is time-consuming, error-prone, and expensive. Imagine, instead, easy-to-use tools that could understand the content of each pixel in satellite imagery. Extremely large amounts of road map data (for example from Google Maps or OpenStreetMap) and social media information (for example geo-tagged photographs, video clips, and social networking posts) are continually collected and stored. These data could be used as sparsely-labeled training data (with varying degrees of specificity and uncertainty) to guide understanding of satellite imagery.Although the data is available, algorithms have yet to be developed to combine these data sources and identify the content of pixels in satellite images. This work will advance this and other potential applications of machine learning where incomplete, uncertain and unspecific labels in training data challenge the development of effective machine learning algorithms. This CAREER project will achieve these advances through the following research objectives:(1) Investigate and develop a mathematical framework and associated algorithms for Multiple Instance Function Learning that addresses linear and non-linear classification and regression problems with varying levels and types of sparsity, uncertainty, and specificity in training labels.(2) Study and apply the proposed framework and algorithms towards the fusion of satellite imagery, road map data and social media for global scene understanding. This research will be conducted in conjunction with integrated education and outreach activities. In particular, an interactive web application will be developed to provide an avenue for introducing concepts from machine learning and remote sensing to the public for dissemination and outreach. This interactive web application will also be used, along with additional hands-on activities, to introduce high school students to machine learning and remote sensing concepts during an annual summer engineering camp held at the University of Missouri in Columbia, MO. Paired with the web application will be a research website in which data, code, publications and presentations will be shared with the research community. Furthermore, undergraduate and graduate research assistants will be trained in the areas of machine learning and remote sensing. Finally, relevant research topics will be introduced in the PI's undergraduate and graduate courses.
这个CAREER项目将推进监督机器学习的最新技术,以允许不完整、不确定和不特定的标签信息。监督机器学习算法通过从示例训练数据中学习,为给定的输入数据产生期望的输出。这些方法通常依赖于完整和准确标记的训练数据来驱动学习算法。然而,许多应用程序都受到标签不完整、不确定和不具体(缺乏精度)的困扰。目前的技术不能充分处理这类数据。例如,对卫星图像进行分析以识别每个像素的内容通常是通过将无监督学习方法(不依赖于标记的训练数据)与人工探索相结合来进行的。这既耗时又容易出错,而且代价高昂。想象一下,可以理解卫星图像中每个像素的内容的易于使用的工具。大量的路线图数据(例如来自谷歌Maps或OpenStreetMap)和社交媒体信息(例如地理标记的照片、视频剪辑和社交网络帖子)被不断收集和存储。这些数据可以作为稀疏标记的训练数据(具有不同程度的特异性和不确定性)来指导对卫星图像的理解。虽然数据是可用的,但还没有开发算法来结合这些数据源并识别卫星图像中像素的内容。这项工作将推动机器学习的其他潜在应用,其中训练数据中的不完整,不确定和非特定标签挑战了有效机器学习算法的发展。本CAREER项目将通过以下研究目标实现这些进步:(1)研究和开发多实例函数学习的数学框架和相关算法,以解决训练标签中具有不同级别和类型的稀疏性、不确定性和特异性的线性和非线性分类和回归问题。(2)研究并应用所提出的框架和算法,实现卫星图像、路线图数据和社交媒体的融合,实现全球场景理解。这项研究将与综合教育和外联活动一起进行。特别是,将开发一个交互式网络应用程序,为向公众介绍机器学习和遥感的概念提供途径,以便传播和推广。在密苏里州哥伦比亚市密苏里大学举行的一年一度的夏季工程夏令营中,这个交互式网络应用程序还将与其他实践活动一起用于向高中生介绍机器学习和遥感概念。与该网络应用程序相结合的是一个研究网站,其中的数据、代码、出版物和演示文稿将与研究社区共享。此外,本科生和研究生的研究助理将接受机器学习和遥感领域的培训。最后,在PI的本科和研究生课程中介绍相关的研究课题。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Alina Zare其他文献
Cross-Layered Cyber-Physical Power System State Estimation towards a Secure Grid Operation
跨层信息物理电力系统状态估计以确保电网安全运行
- DOI:
10.1109/pesgm48719.2022.9916756 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Nader Aljohani;Dennis Agnew;Keerthiraj Nagaraj;Sharon Boamah;Reynold Mathieu;A. Bretas;J. Mcnair;Alina Zare - 通讯作者:
Alina Zare
Robust Semi-Supervised Classification using GANs with Self-Organizing Maps
使用具有自组织映射的 GAN 进行鲁棒半监督分类
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Ronald Fick;P. Gader;Alina Zare - 通讯作者:
Alina Zare
New approach for measuring interconnectivity of fission gas pores in nuclear fuels from 2D micrographs
通过二维显微照片测量核燃料中裂变气体孔隙互连性的新方法
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:4.5
- 作者:
Charlyne A. Smith;Yiming Cui;B. Miller;D. Keiser;Alina Zare;A. Aitkaliyeva - 通讯作者:
A. Aitkaliyeva
Estimating soil mineral nitrogen from data-sparse field experiments using crop model-guided deep learning approach
- DOI:
10.1016/j.compag.2024.109355 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Rishabh Gupta;Satya K. Pothapragada;Weihuang Xu;Prateek Kumar Goel;Miguel A. Barrera;Mira S. Saldanha;Joel B. Harley;Kelly T. Morgan;Alina Zare;Lincoln Zotarelli - 通讯作者:
Lincoln Zotarelli
Hyperspectral tree crown classification using the multiple instance adaptive cosine estimator
使用多实例自适应余弦估计器进行高光谱树冠分类
- DOI:
10.7717/peerj.6405 - 发表时间:
2018 - 期刊:
- 影响因子:2.7
- 作者:
Sheng Zou;P. Gader;Alina Zare - 通讯作者:
Alina Zare
Alina Zare的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Alina Zare', 18)}}的其他基金
CAREER: Supervised Learning for Incomplete and Uncertain Data
职业:不完整和不确定数据的监督学习
- 批准号:
1723891 - 财政年份:2016
- 资助金额:
$ 45.41万 - 项目类别:
Continuing Grant
相似海外基金
SHF: Small: Semi-supervised Learning for Design and Quality Assurance of Integrated Circuits
SHF:小型:集成电路设计和质量保证的半监督学习
- 批准号:
2334380 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
A data-saving and self-supervised deep learning system for continuous ischemic stroke assessment
用于连续缺血性中风评估的数据保存和自我监督深度学习系统
- 批准号:
24K15011 - 财政年份:2024
- 资助金额:
$ 45.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Self-supervised feature learning for rapid processing of marine imagery
用于快速处理海洋图像的自监督特征学习
- 批准号:
LP220200949 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Linkage Projects
SCH: Dementia Early Detection for Under-represented Populations via Fair Multimodal Self-Supervised Learning
SCH:通过公平的多模式自我监督学习对代表性不足的人群进行痴呆症早期检测
- 批准号:
10816864 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Knockoff Feature Selection Techniques for Robust Inference in Supervised and Unsupervised Learning
监督和无监督学习中鲁棒推理的仿冒特征选择技术
- 批准号:
2310955 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
CRII: CIF: Information Theoretic Measures for Fairness-aware Supervised Learning
CRII:CIF:公平意识监督学习的信息论措施
- 批准号:
2246058 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant
A Novel Approach to Semi-Supervised Statistical Machine Learning
半监督统计机器学习的新方法
- 批准号:
DP230101671 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Discovery Projects
Development of a Sign Language Recognition Engine Using Self-Supervised Learning Methods
使用自我监督学习方法开发手语识别引擎
- 批准号:
23K17511 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Algebraic Structures in Weakly Supervised Disentangled Representation Learning
弱监督解缠表示学习中的代数结构
- 批准号:
22KJ0880 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Grant-in-Aid for JSPS Fellows
CRII:SCH:Self-Supervised Contrastive Representation Learning for Medical Time Series
CRII:SCH:医学时间序列的自监督对比表示学习
- 批准号:
2245894 - 财政年份:2023
- 资助金额:
$ 45.41万 - 项目类别:
Standard Grant














{{item.name}}会员




