CAREER: Robustness Guided Testing and Verification for Cyber-Physical Systems
职业:网络物理系统的鲁棒性引导测试和验证
基本信息
- 批准号:1350420
- 负责人:
- 金额:$ 44.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2020-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops a theoretical framework as well as software tools to support testing and verification of a Cyber-Physical System (CPS) within a Model-Based Design (MBD) process. The theoretical bases of the framework are stochastic optimization methods, and robustness notions of formal specification languages. The project's research comprises three components: development of conditions on the algorithms and on the structure of the CPS for inferring finite-time guarantees on the randomized testing process; the study of testing methods that can support modular and compositional system design; and investigation of appropriate notions of conformance between two system models and between a model and its implementation on a computational platform. All of these components are needed to support testing and verification in all the stages of an MBD process as well as to support component reuse, incremental system improvements and modular design. The evaluation of the framework is driven by the problems of verifying automotive control systems and medical devices. As safety-critical CPS become ubiquitous, the need for design methods that guarantee correct system functionality and performance becomes more urgent. Certification and government agencies need dependable testing and verification tools to incorporate in certification standards and procedures. The concrete benefits to the society are both in terms of reduced catastrophic design errors in new products and in terms of reduced economic costs for new product development. The former increases the confidence in new technologies while the latter improves the competitiveness of the companies that utilize such technologies. The theoretical results of this project are being incorporated into software tools for testing, verification and validation of complex CPS. The evaluation focus of the project on verifying infusion pumps and automotive control software ultimately helps in avoiding harmful losses due to errors in these safety-critical systems. The use of any software tool that is based on formal or semi-formal methods requires engineers with solid training on these technologies. This proposal puts forward an education curriculum for developing new courses that introduce formal and semi-formal methods for CPS at all levels of higher education, i.e., undergraduate, graduate and continuing education. Particular attention is devoted into on-line continuing education of practicing engineers who must acquire new MBD skills.
该项目开发了一个理论框架以及软件工具,以支持基于模型的设计(MBD)过程中的网络物理系统(CPS)的测试和验证。该框架的理论基础是随机优化方法和形式化规范语言的鲁棒性概念。该项目的研究包括三个组成部分:发展条件的算法和结构的CPS推断有限的时间保证的随机测试过程中;测试方法的研究,可以支持模块化和组合系统设计;和调查的适当概念之间的一致性两个系统模型和模型之间,其实现在计算平台上。所有这些组件都需要支持MBD过程所有阶段的测试和验证,以及支持组件重用,增量系统改进和模块化设计。框架的评估是由验证汽车控制系统和医疗设备的问题驱动的。随着安全关键型CPS变得无处不在,对保证正确的系统功能和性能的设计方法的需求变得更加迫切。认证和政府机构需要可靠的测试和验证工具,以纳入认证标准和程序。对社会的具体好处是减少了新产品的灾难性设计错误,并降低了新产品开发的经济成本。前者增加了对新技术的信心,而后者提高了利用这些技术的公司的竞争力。该项目的理论成果正在被纳入软件工具中,用于复杂CPS的测试、验证和确认。该项目的评估重点是验证输液泵和自动控制软件,最终有助于避免由于这些安全关键系统中的错误而造成的有害损失。任何基于正式或半正式方法的软件工具的使用都需要工程师在这些技术方面接受过扎实的培训。该提案提出了一个教育课程,以开发新的课程,在各级高等教育中引入正式和半正式的CPS方法,即,本科、研究生和继续教育。特别注意的是投入到实践工程师谁必须获得新的MBD技能的在线继续教育。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Fainekos其他文献
Rapidly-exploring Random Trees-based Test Generation for Autonomous Vehicles
快速探索自动驾驶汽车基于随机树的测试生成
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Cumhur Erkan Tuncali;Georgios Fainekos - 通讯作者:
Georgios Fainekos
Search Based Testing for Code Coverage and Falsification in Cyber-Physical Systems
基于搜索的网络物理系统中代码覆盖率和伪造测试
- DOI:
10.1109/case56687.2023.10260576 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Quinn Thibeault;Tanmay Khandait;Giulia Pedrielli;Georgios Fainekos - 通讯作者:
Georgios Fainekos
Gray-box adversarial testing for control systems with machine learning components
具有机器学习组件的控制系统的灰盒对抗性测试
- DOI:
- 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Shakiba Yaghoubi;Georgios Fainekos - 通讯作者:
Georgios Fainekos
Safe Navigation in Human Occupied Environments Using Sampling and Control Barrier Functions
使用采样和控制屏障功能在人类居住环境中安全导航
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
K. Majd;Shakiba Yaghoubi;Tomoya Yamaguchi;Bardh Hoxha;D. Prokhorov;Georgios Fainekos - 通讯作者:
Georgios Fainekos
SMT-Based Dynamic Multi-Robot Task Allocation
基于SMT的动态多机器人任务分配
- DOI:
10.48550/arxiv.2403.11737 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Victoria Tuck;Pei;Georgios Fainekos;Bardh Hoxha;Hideki Okamoto;S. S. Sastry;S. Seshia - 通讯作者:
S. Seshia
Georgios Fainekos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Fainekos', 18)}}的其他基金
CPS: Synergy: Collaborative Research: Collaborative Vehicular Systems
CPS:协同:协作研究:协作车辆系统
- 批准号:
1446730 - 财政年份:2015
- 资助金额:
$ 44.74万 - 项目类别:
Continuing Grant
I-Corps: Formal Specification Driven Verification and Validation Framework for Cyber-Physical Systems
I-Corps:网络物理系统的正式规范驱动的验证和确认框架
- 批准号:
1454143 - 财政年份:2014
- 资助金额:
$ 44.74万 - 项目类别:
Standard Grant
CSR: Small: Collaborative Research: Gray Box Testing of Complex Cyber-Physical Systems Using Optimization and Optimal Control Techniques
CSR:小型:协作研究:使用优化和最优控制技术对复杂信息物理系统进行灰盒测试
- 批准号:
1319560 - 财政年份:2013
- 资助金额:
$ 44.74万 - 项目类别:
Standard Grant
CSR: Small: Model Exploration for Cyber-Physical Systems
CSR:小:网络物理系统的模型探索
- 批准号:
1116136 - 财政年份:2011
- 资助金额:
$ 44.74万 - 项目类别:
Standard Grant
SHF: Small: Collaborative Research: Statistical Techniques for Verifying Temporal Properties of Embedded and Mixed-Signal Systems
SHF:小型:协作研究:验证嵌入式和混合信号系统时间特性的统计技术
- 批准号:
1017074 - 财政年份:2010
- 资助金额:
$ 44.74万 - 项目类别:
Continuing Grant
相似海外基金
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335411 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Standard Grant
A framework for evaluating and explaining the robustness of NLP models
评估和解释 NLP 模型稳健性的框架
- 批准号:
EP/X04162X/1 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Research Grant
CAREER: Towards Fairness in the Real World under Generalization, Privacy and Robustness Challenges
职业:在泛化、隐私和稳健性挑战下实现现实世界的公平
- 批准号:
2339198 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Continuing Grant
CAREER: Ethical Machine Learning in Health: Robustness in Data, Learning and Deployment
职业:健康领域的道德机器学习:数据、学习和部署的稳健性
- 批准号:
2339381 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Continuing Grant
OPUS: Robustness and complexity: how evolution builds precise traits from sloppy components
OPUS:稳健性和复杂性:进化如何从草率的组成部分构建精确的特征
- 批准号:
2325755 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Standard Grant
Advancing plant synthetic gene circuit capability, robustness, and use
提高植物合成基因电路的能力、稳健性和使用
- 批准号:
DP240103385 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Discovery Projects
Robustness-oriented and serviceable design of innovative modular buildings
创新模块化建筑的稳健性和实用性设计
- 批准号:
DP240101301 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Discovery Projects
Collaborative Research: AF: Small: Exploring the Frontiers of Adversarial Robustness
合作研究:AF:小型:探索对抗鲁棒性的前沿
- 批准号:
2335412 - 财政年份:2024
- 资助金额:
$ 44.74万 - 项目类别:
Standard Grant
Property-Driven Quality Assurance of Adversarial Robustness of Deep Neural Networks
深度神经网络对抗鲁棒性的属性驱动质量保证
- 批准号:
23K11049 - 财政年份:2023
- 资助金额:
$ 44.74万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319242 - 财政年份:2023
- 资助金额:
$ 44.74万 - 项目类别:
Standard Grant