CAREER: Electrokinetic Flows and Electrochemical Dynamics in Concentrated Electrolytes and Ionic Liquids

职业:浓电解质和离子液体中的动电流和电化学动力学

基本信息

  • 批准号:
    1350647
  • 负责人:
  • 金额:
    $ 40.01万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-05-01 至 2019-04-30
  • 项目状态:
    已结题

项目摘要

CAREER: Electrokinetic Flows and Electrochemical Dynamics in Concentrated Electrolytes and Ionic LiquidsPI: Khair, AdityaInstitution: Carnegie Mellon UniversityMany liquid and particle systems in technology and biology contain ions, and in some of these systems, the concentration of ions is large. The theory that scientists and engineers use to predict the dynamics of these systems is based on assumptions that the ions can be considered to be point charges and that interactions among the ions are not important. The equations based on this theory work well for dilute ion concentrations, but they fail to predict interesting phenomena observed when the concentration of ions is large. Systems containing high concentrations of ions appear in many problems of technological and biological importance, including water desalination, the development of batteries and super-capacitors, and transfer of ions across cell membranes through ion channels. The goal of this project is to develop an integrated research and teaching program to develop a new model that scientists and engineers can use to describe the essential features of electrically driven transport in concentrated systems. Understanding such phenomena and training students to appreciate them will enhance manufacturing capabilities and may lead to new technological developments such as novel separation protocols for nanoparticles and biomolecules based on the motion of charged objects. The multi-tiered educational plan for the project includes outreach activities, undergraduate and graduate course design and research, technical software development, and organization of scientific meetings.This project will develop a continuum framework for electrically driven (electrokinetic) fluid flow and particle transport in concentrated electrolytes and ionic liquids, via a combination of modeling, computation, and experiment. Concentrated electrolytes and ionic liquids are attractive materials for energy storage and conversion technologies, but existing theoretical models fail to describe their dynamical response to applied voltages. The central hypothesis of the project is that explicit ion-ion interactions in concentrated systems, due to steric repulsion and electrostatic correlations, result in their dynamics being radically different from dilute solutions. Molecular simulations can quantify ion-ion interactions in equilibrium systems; however, they are often too computationally expensive to capture electrokinetic phenomena. Thus, there is a pressing need for a continuum-level theory that encapsulates the essential features of nonequilibrium transport in concentrated charge-carrying liquids in complex geometries. A model will be developed for anomalous electrokinetic transport in concentrated systems, including electrophoretic mobility reversals. The electrostatic forces between particles in concentrated electrolytes and ionic liquids will be quantified to predict suspension stability and flocculation in these media. The electrochemical dynamics of ionic liquids will be analyzed.
职业:浓电解质和离子液体中的动电流动和电化学动力学PI:克海尔,Aditya机构:卡内基梅隆大学技术和生物学中的许多液体和粒子系统都含有离子,在其中一些系统中,离子的浓度很大。 科学家和工程师用来预测这些系统动力学的理论是基于这样的假设,即离子可以被认为是点电荷,离子之间的相互作用并不重要。 基于这一理论的方程适用于稀离子浓度,但它们不能预测当离子浓度很大时观察到的有趣现象。 含有高浓度离子的系统出现在许多具有技术和生物重要性的问题中,包括水脱盐、电池和超级电容器的开发以及通过离子通道跨细胞膜的离子转移。 该项目的目标是开发一个综合的研究和教学计划,以开发一个新的模型,科学家和工程师可以用来描述集中系统中电动运输的基本特征。了解这些现象并训练学生欣赏它们将提高制造能力,并可能导致新的技术发展,例如基于带电物体运动的纳米颗粒和生物分子的新分离协议。 该项目的多层次教育计划包括外展活动、本科和研究生课程设计和研究、技术软件开发以及组织科学会议。该项目将通过建模、计算和实验的结合,开发浓缩电解质和离子液体中电驱动(动电)流体流动和颗粒传输的连续框架。浓电解质和离子液体是能量存储和转换技术的有吸引力的材料,但现有的理论模型不能描述它们对外加电压的动态响应。该项目的中心假设是,由于空间排斥和静电相关性,浓缩系统中明确的离子-离子相互作用导致其动力学与稀溶液完全不同。分子模拟可以量化平衡系统中的离子-离子相互作用;然而,它们通常在计算上过于昂贵,无法捕获电动现象。因此,迫切需要一个连续水平的理论,封装的非平衡输运在复杂的几何形状集中的电荷携带液体的基本特征。一个模型将开发异常电动运输集中的系统,包括电泳迁移率逆转。在浓缩电解质和离子液体中的颗粒之间的静电力将被量化,以预测在这些介质中的悬浮稳定性和絮凝。 离子液体的电化学动力学将进行分析。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditya Khair其他文献

Aditya Khair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditya Khair', 18)}}的其他基金

Nonlinear Electrophoresis of Charged Colloidal Particles
带电胶体粒子的非线性电泳
  • 批准号:
    2002120
  • 财政年份:
    2020
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
Coupling Electrokinetics and Rheology: Novel Flows, Interactions and Particle Motions
耦合动电学和流变学:新颖的流动、相互作用和粒子运动
  • 批准号:
    1066853
  • 财政年份:
    2011
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant

相似海外基金

NSF Convergence Accelerator Track K: Electrokinetic water purification system for point-of-use applications
NSF Convergence Accelerator Track K:用于使用点应用的动电水净化系统
  • 批准号:
    2344398
  • 财政年份:
    2024
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314340
  • 财政年份:
    2023
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
Electrokinetic Biodegradation of Glyphosate: Feasibility, Mechanism, and Transport Modeling
草甘膦的电动生物降解:可行性、机制和传输模型
  • 批准号:
    2305141
  • 财政年份:
    2023
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
I-Corps: Electrokinetic Drug Delivery into Dental Enamel
I-Corps:电动药物输送至牙釉质
  • 批准号:
    2331740
  • 财政年份:
    2023
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
Collaborative Research: Self-regulated non-equilibrium assembly of chiral colloidal clusters via electrokinetic interactions
合作研究:通过动电相互作用实现手性胶体簇的自我调节非平衡组装
  • 批准号:
    2314339
  • 财政年份:
    2023
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Continuing Grant
Fullerene Assisted-Micellar Electrokinetic Chromatography of Major Carotenoids
主要类胡萝卜素的富勒烯辅助胶束电动色谱法
  • 批准号:
    572245-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 40.01万
  • 项目类别:
    University Undergraduate Student Research Awards
Electrokinetic flow through charged, soft porous media
通过带电软多孔介质的动电流
  • 批准号:
    RGPIN-2018-03809
  • 财政年份:
    2022
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Electrokinetic Phenomena in Microfluidics and Nanofluidics
微流体和纳流体中的动电现象
  • 批准号:
    RGPIN-2021-02411
  • 财政年份:
    2022
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Discovery Grants Program - Individual
Purification of bacteriophages using cascade-driven electrokinetic separation
使用级联驱动电动分离纯化噬菌体
  • 批准号:
    2133207
  • 财政年份:
    2022
  • 资助金额:
    $ 40.01万
  • 项目类别:
    Standard Grant
Electrokinetic lithography: in situ microengineering of anisotropic 3D collagen matrices
动电光刻:各向异性 3D 胶原基质的原位微工程
  • 批准号:
    10630918
  • 财政年份:
    2022
  • 资助金额:
    $ 40.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了