Nonlinear Electrophoresis of Charged Colloidal Particles

带电胶体粒子的非线性电泳

基本信息

  • 批准号:
    2002120
  • 负责人:
  • 金额:
    $ 29.93万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The goal of this project is to predict and measure how electrically charged particles in electrolyte solutions move under strong voltages. Such motion is called electrophoresis and is important in lab-on-a-chip devices, e-ink displays, pigments, coatings, and the petroleum industry. A central objective is to quantify the ratio of the speed of the particle to the voltage strength, which is known as the electrophoretic mobility. Such measurements are conducted to infer the electrical charge of a particle, a key quantity in predicting the behavior of suspensions of particles. One complication is that electrophoretic mobility may depend on the voltage in non-linear way, particularly with large voltages in organic electrolytes (e.g. oils doped with surfactant molecules). However, predictive models for this nonlinear, voltage-dependent mobility are lacking. Thus, the intellectual merit of this project is to develop theory and numerical computations to predict the nonlinear mobility, which will be compared to experimental measurements. A broader technological impact is the development of new methods to determine particle charge to aid in designing dispersions with enhanced stability, which will benefit the formulation of household and personal-care products that use organic solvents. The educational broader impact of this project includes course development, undergraduate research, and outreach activities. For the latter, educational modules for K-12 students will be developed and integrated into existing outreach programs at Carnegie Mellon University.The intellectual merit of this project is to predict the electric field-dependent mobility of a charged colloidal particle via numerical solution of the electrokinetic equations governing fluid flow, ion transport and reaction kinetics, and electrostatic fields in electrophoresis. These predictions will be compared against experimental measurements, which will enable feedback to refine modeling assumptions. The numerical scheme will employ a custom spectral element code that is ideally suited to the task. The project is split into two technical objectives. Objective 1 is focused on steady electrophoresis under a uniform, steady (dc) field, for which the mobility is time independent. The goal is to compute the field-dependent mobility over the entire range of experimentally relevant field strength. In objective 2, particle motion under a single frequency ac field will be examined, for which the mobility is time dependent. Here, the hypothesis is that the nonlinear distortion of the Debye cloud, beyond the weak-field limit, leads to rectified migration under an ac field, due to a mismatch in the diffusion coefficients of the cations and anions in an electrolyte. The project is novel since previous efforts have predominantly focused on weak applied fields, where the mobility is field-independent. The project will generate new computational tools to analyze experiments on nonlinear electrophoresis. This will have a broader impact to the colloid science and soft matter communities, who will be able to use the results to infer surface charge from field-dependent mobility measurements.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是预测和测量电解质溶液中的带电粒子如何在强电压下移动。这种运动被称为电泳,在芯片实验室设备、电子墨水显示器、颜料、涂料和石油工业中很重要。一个中心目标是量化粒子的速度与电压强度的比率,这被称为电泳迁移率。进行这种测量是为了推断颗粒的电荷,这是预测颗粒悬浮液行为的关键量。一个复杂之处在于,电泳迁移率可能以非线性方式取决于电压,特别是在有机电解质(例如,掺杂有表面活性剂分子的油)中具有大电压的情况下。 然而,这种非线性的,电压依赖性的迁移率的预测模型是缺乏的。因此,该项目的智力价值是发展理论和数值计算来预测非线性迁移率,并将其与实验测量进行比较。更广泛的技术影响是开发了确定颗粒电荷的新方法,以帮助设计具有增强稳定性的分散体,这将有利于使用有机溶剂的家用和个人护理产品的配方。该项目的教育影响包括课程开发,本科生研究和推广活动。对于后者,将开发针对K-12学生的教育模块,并将其整合到卡内基梅隆大学现有的外展项目中。该项目的智力价值是通过数值求解电动力学方程来预测带电胶体颗粒的电场依赖性迁移率。控制流体流动、离子传输和反应动力学以及电泳中的静电场。这些预测将与实验测量结果进行比较,这将使反馈能够完善建模假设。数值方案将采用一个自定义的光谱元素代码,这是非常适合的任务。该项目分为两个技术目标。目的1是集中在一个均匀的,稳定的(直流)电场下的稳定电泳,其中的迁移率是时间无关的。我们的目标是计算在整个范围内的实验相关的场强场依赖的迁移率。在目标2中,将检查单频交流场下的粒子运动,其中迁移率是时间依赖的。在这里,假设是德拜云的非线性畸变,超出弱场极限,导致整流迁移下的交流场,由于在电解质中的阳离子和阴离子的扩散系数的失配。该项目是新颖的,因为以前的努力主要集中在弱应用领域,其中的流动性是外地独立的。该项目将产生新的计算工具来分析非线性电泳实验。这将对胶体科学和软物质社区产生更广泛的影响,他们将能够使用结果从场依赖迁移率测量中推断表面电荷。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A thin double layer analysis of asymmetric rectified electric fields (AREFs)
  • DOI:
    10.1007/s10665-021-10139-x
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Bhavya Balu;Aditya S. Khair
  • 通讯作者:
    Bhavya Balu;Aditya S. Khair
Breaking electrolyte symmetry in induced-charge electro-osmosis
  • DOI:
    10.1017/jfm.2020.754
  • 发表时间:
    2020-12-25
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Khair, Aditya S.;Balu, Bhavya
  • 通讯作者:
    Balu, Bhavya
Nonlinear electrophoretic velocity of a spherical colloidal particle
  • DOI:
    10.1017/jfm.2023.537
  • 发表时间:
    2023-07-31
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Cobos, Richard;Khair, Aditya S.
  • 通讯作者:
    Khair, Aditya S.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Aditya Khair其他文献

Aditya Khair的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Aditya Khair', 18)}}的其他基金

CAREER: Electrokinetic Flows and Electrochemical Dynamics in Concentrated Electrolytes and Ionic Liquids
职业:浓电解质和离子液体中的动电流和电化学动力学
  • 批准号:
    1350647
  • 财政年份:
    2014
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant
Coupling Electrokinetics and Rheology: Novel Flows, Interactions and Particle Motions
耦合动电学和流变学:新颖的流动、相互作用和粒子运动
  • 批准号:
    1066853
  • 财政年份:
    2011
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant

相似海外基金

CAREER: Alternating Current Electrophoresis in Spatially Non-Uniform Electric Fields
职业:空间不均匀电场中的交流电泳
  • 批准号:
    2340925
  • 财政年份:
    2024
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant
High-resolution mass spectrometer with Liquid Chromatography (LC) and Capillary Electrophoresis (CE)
具有液相色谱 (LC) 和毛细管电泳 (CE) 功能的高分辨率质谱仪
  • 批准号:
    515835726
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Major Research Instrumentation
Automated Electrophoresis Platform to Streamline Validations of Biomedical Samples
自动化电泳平台可简化生物医学样品的验证
  • 批准号:
    10710812
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
Microchip electrophoresis as basis for fully integrated, fully automated, low-cost radiopharmaceutical QC platform
微芯片电泳作为完全集成、全自动、低成本放射性药物 QC 平台的基础
  • 批准号:
    10697506
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
Sodium Dodecyl Sulfate Removal Interface to Enable Characterization of Fragment Impurities in Monoclonal Antibodies by Capillary Electrophoresis Sodium Dodecyl Sulfate Coupled to Mass Spectrometry
十二烷基硫酸钠去除接口可通过十二烷基硫酸钠毛细管电泳与质谱联用对单克隆抗体中的片段杂质进行表征
  • 批准号:
    10759354
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
Planar Capillary Electrophoresis
平面毛细管电泳
  • 批准号:
    2247387
  • 财政年份:
    2023
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant
New Advances in Multisegment Injection-Capillary Electrophoresis-Mass Spectrometry for Accelerating Biomarker Discovery in Metabolomics
多段注射-毛细管电泳-质谱法加速代谢组学生物标志物发现的新进展
  • 批准号:
    RGPIN-2020-06630
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Discovery Grants Program - Individual
Collaborative Research: Fundamental Mechanisms of Microfluidic Traveling-Wave Electrophoresis
合作研究:微流控行波电泳的基本机制
  • 批准号:
    2216766
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Continuing Grant
Development of Desorption Techniques for Capillary Electrophoresis Analysis of Environmentally Toxic and Biochemically Active Contaminants on Nanoparticles and Nanomaterials in Water after Preconcentration by Liposome Encapsulation
脂质体封装预浓缩后水中纳米颗粒和纳米材料上环境毒性和生化活性污染物毛细管电泳分析解吸技术的发展
  • 批准号:
    RGPIN-2018-05320
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
    Discovery Grants Program - Individual
Online Affinity Micro Free Flow Electrophoresis Assays for Continuous Monitoring of Biochemical Messengers
用于连续监测生化信使的在线亲和微自由流电泳分析
  • 批准号:
    10420769
  • 财政年份:
    2022
  • 资助金额:
    $ 29.93万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了