CAREER:Engineering Efficient, Thin-film Hybrid Photovoltaic Elements Based on Excitonic Energy Transfer
职业:基于激子能量转移的高效薄膜混合光伏元件的工程设计
基本信息
- 批准号:1350800
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-04-01 至 2020-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The objective of this research is to engineer a new type of ultra-thin, flexible, yet efficient and robust photovoltaic solar cell. The approach is to employ solution processable semiconductor nanocrystals that are chemically grafted on electrically accessible, flexible Si nanopillar p-i-n junction substrates.Intellectual merit: The design of these novel hybrid solar cells is based on non-radiative and radiative energy transfer, which provides efficient electromagnetic coupling between highly absorbing nanocrystals and 3-dimensionally structured thin Si substrates. Such longer-range energy transfer mechanisms essentially avoid typical charge transfer problems leading to lower efficiencies of traditional bulk-heterojunction geometries. Optically thick nanocrystal multilayers with engineered energy transfer interactions will be grafted on dense arrays of nanopillars processed from thin Si substrates with enhanced light trapping capabilities and optimized p-i-n junctions for efficient charge separation and transport. Such nanocrystal-sensitized Si solar cells are expected to reach 15% conversion efficiency with minimal Si material requirements.Broader impacts: The development of thin, yet efficient photovoltaic elements should assist in lessening our reliance on fossil fuels and contribute towards the development of domestic, eco-friendly and renewable energy-generating technologies and industries. Hybrid optoelectronics structures will be of interest for various light-emitting and sensor applications and such interdisciplinary approach will provide students with an opportunity to gain proficiency in the fields of photonics, materials science and engineering and physics and to connect to industrial projects and international collaborators. Strong effort will be devoted to involve undergraduate and pre-college students and facilitate their interest in science and engineering.
这项研究的目的是设计一种新型的超薄,灵活,但高效和坚固的光伏太阳能电池。该方法是采用溶液处理的半导体纳米晶体,化学接枝在电访问,灵活的硅纳米柱p-i-n结substrate.Intellectual优点:这些新型的混合型太阳能电池的设计是基于非辐射和辐射能量转移,这提供了高吸收纳米晶体和3-dimensionally结构的薄硅基板之间的有效的电磁耦合。这种较长范围的能量转移机制基本上避免了导致传统体异质结几何形状的较低效率的典型电荷转移问题。具有工程化能量转移相互作用的光学厚多层膜将接枝在由薄Si衬底加工的纳米柱的密集阵列上,该纳米柱具有增强的光捕获能力和优化的p-i-n结,用于有效的电荷分离和传输。这种纳米晶敏化硅太阳能电池预计将达到15%的转换效率与最低的硅材料的要求。更广泛的影响:薄,但有效的光伏元件的发展应有助于减少我们对化石燃料的依赖,并有助于国内,生态友好和可再生能源发电技术和产业的发展。混合光电子结构将对各种发光和传感器应用感兴趣,这种跨学科的方法将为学生提供机会,使他们能够熟练掌握光子学,材料科学与工程和物理学领域,并与工业项目和国际合作者建立联系。将大力吸引本科生和大学预科生参与,促进他们对科学和工程的兴趣。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anton Malko其他文献
Anton Malko的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anton Malko', 18)}}的其他基金
Collaborative Research: Single Photon Emission in Lanthanide-Doped 2D Materials & Devices
合作研究:稀土掺杂二维材料中的单光子发射
- 批准号:
2202278 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
A Route Towards Efficient Energy Relaxation from Nanocrystals to Oxide-free Semiconductor Surfaces
从纳米晶体到无氧化物半导体表面的有效能量弛豫之路
- 批准号:
1207123 - 财政年份:2012
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
Frontiers of Environmental Science & Engineering
- 批准号:51224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21224004
- 批准年份:2012
- 资助金额:20.0 万元
- 项目类别:专项基金项目
Chinese Journal of Chemical Engineering
- 批准号:21024805
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:专项基金项目
相似海外基金
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233592 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Investigating the Assembly of Bacterial Encapsulins for the Efficient Engineering of Nanoscale Bioreactors
研究细菌封装蛋白的组装以实现纳米级生物反应器的高效工程
- 批准号:
2875161 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Studentship
SEALPTSC Strain and Photonic Engineering Toward Stable, Efficient, and Large-scale All-perovskite Triple-junction Solar Cells
SEALPTSC 应变和光子工程实现稳定、高效和大规模全钙钛矿三结太阳能电池
- 批准号:
EP/Y029216/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
EAGER/Collaborative Research: CRYO: Engineering Atomically Thin Magnetic Materials for Efficient Solid-State Cooling at Cryogenic Temperatures
EAGER/合作研究:CRYO:工程原子薄磁性材料,可在低温下进行高效固态冷却
- 批准号:
2233375 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
CDS&E: ECCS: Accurate and Efficient Uncertainty Quantification and Reliability Assessment for Computational Electromagnetics and Engineering
CDS
- 批准号:
2305106 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
An Efficient Computational Solver for Complex Engineering Problems
复杂工程问题的高效计算求解器
- 批准号:
DE230101281 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Discovery Early Career Researcher Award
eStructMR - Engineering Electrochemical Structured Membrane Reactor for Efficient Co-valorisation of Methane and Carbon Dioxide
eStructMR - 用于甲烷和二氧化碳高效共价的工程电化学结构膜反应器
- 批准号:
EP/Y028228/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Fellowship
Engineering Fuel Cell Electrodes to Overcome Ion Transport Limitations using Low-cost, Efficient Lignin-based Ionomers
使用低成本、高效的木质素离聚物设计燃料电池电极以克服离子传输限制
- 批准号:
2310185 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Quantum engineering of energy-efficient molecular materials (QMol)
节能分子材料的量子工程(QMol)
- 批准号:
EP/X026876/1 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Research Grant
An intellectual overlap of pure mathematics and engineering techniques targeted to develop self-reliant, efficient, and clean artificial intelligence processors
纯数学和工程技术的智力重叠,旨在开发自力更生、高效和清洁的人工智能处理器
- 批准号:
577214-2022 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Alliance Grants