Emergence of Geometric Order and Cell Identity in the Cone Photoreceptor Mosaic
视锥细胞马赛克中几何顺序和细胞身份的出现
基本信息
- 批准号:1353914
- 负责人:
- 金额:$ 52.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-15 至 2018-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Animals begin their life by undergoing a remarkable process of self-organization: Starting from a tiny, single-celled egg, they develop into an incredibly complex organism. Moreover, they do so without centralized control. No master builder directs each cell to its correct position in the final body plan. How exactly living cells are able to collaborate to create precisely constructed tissues and organs is the central question of developmental biology. This project will study a particular example of such self-organization in the fish eye. It will use a combination of approaches, including observations of eye organization, perturbation of this organization by laser pulses, and computer simulations. These techniques will provide a deeper understanding of the fish eye system. This fundamental knowledge about biological self-organization has potential applications ranging from new disease treatments to the design of synthetic self-organizing systems inspired by the mechanisms at work in the eye. As a collaboration between a physicist and a biologist, the project will create opportunities for interdisciplinary education at many levels. The investigators will place a special emphasis on involving students from traditionally underrepresented backgrounds in research early in their undergraduate careers.The project will combine biological experiments with mathematical modeling to study the emergence of the striking crystalline arrangement of cone photoreceptor cells in the zebrafish retina. The guiding hypothesis is that the formation of this ordered lattice depends on anisotropic mechanical stresses imposed on the retinal epithelium by the annular ligament, a rigid ring of tissue that surrounds the retinal margin. Prior work has shown that a mathematical model of the interaction between mechanical forces and planar cell polarity can reproduce many of the observed features of the regular arrangement of cones, and, in particular, the model correctly predicted the presence of strongly anisotropic interactions between cells in perturbed retina. The current project will test the guiding hypothesis directly. The investigators will use new transgenic strains generated on a pigment mutant background to perform the first imaging and laser microsurgery of retinas in living, adult fish. This will provide a fine-grained quantitative characterization of the degree of mosaic order in space and time. Then, the investigators will observe how this order is affected by ablation of the annular ligament and the photoreceptor cells, using microsurgery to measure stress anisotropy in the retina.
动物的生命始于一个非凡的自我组织过程:从一个微小的单细胞卵子开始,它们发展成为一个令人难以置信的复杂有机体。此外,他们这样做没有集中控制。没有主建造者将每个细胞引导到最终身体计划的正确位置。活细胞究竟是如何协同创造出精确构造的组织和器官的,这是发育生物学的核心问题。这个项目将研究鱼眼中这种自组织的一个特殊例子。它将使用多种方法,包括对眼睛组织的观察、激光脉冲对眼睛组织的扰动和计算机模拟。这些技术将提供对鱼眼系统更深入的了解。这种关于生物自组织的基本知识具有潜在的应用范围,从新的疾病治疗到受眼睛工作机制启发的合成自组织系统的设计。作为物理学家和生物学家之间的合作,该项目将为多层次的跨学科教育创造机会。调查人员将特别强调让来自传统上代表性不足的背景的学生在本科职业生涯的早期参与研究。该项目将结合生物实验和数学模型来研究斑马鱼视网膜中锥体感光细胞的惊人晶体排列。指导性假设是,这种有序晶格的形成取决于环韧带对视网膜上皮施加的各向异性机械应力,环韧带是包围视网膜边缘的一种刚性组织环。先前的研究表明,机械力和平面细胞极性之间相互作用的数学模型可以再现许多观察到的视锥细胞规则排列的特征,特别是,该模型正确地预测了受干扰视网膜中细胞之间强烈各向异性相互作用的存在。目前的项目将直接测试指导性假设。研究人员将使用在色素突变背景下产生的新的转基因菌株,对活的成年鱼的视网膜进行首次成像和激光显微手术。这将提供在空间和时间上马赛克顺序程度的细粒度定量表征。然后,研究人员将使用显微外科测量视网膜应力各向异性,观察环状韧带和光感受器细胞消融对这一顺序的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David K Lubensky其他文献
David K Lubensky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David K Lubensky', 18)}}的其他基金
CAREER: Nonequilibrium organization in epithelial sheets
职业:上皮片中的非平衡组织
- 批准号:
1056456 - 财政年份:2011
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
相似国自然基金
Lagrangian origin of geometric approaches to scattering amplitudes
- 批准号:24ZR1450600
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Analysis on singularities of higher order geometric gradient flows
高阶几何梯度流的奇点分析
- 批准号:
21H00990 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
CAREER: Geometric Quantum Order: Fractons, Tensor Gauge Theories and Beyond
职业:几何量子阶:分形、张量规范理论及其他
- 批准号:
2045181 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Continuing Grant
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
2123224 - 财政年份:2021
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Fourth order geometric evolution equations with nonlinear boundary conditions
具有非线性边界条件的四阶几何演化方程
- 批准号:
442279986 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Research Fellowships
Study of properties of solutions to geometric higher order variational problems
几何高阶变分问题解的性质研究
- 批准号:
20K14341 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New development on higher order elliptic and parabolic PDEs -- cooperation between harmonic analysis and geometric analysis
高阶椭圆偏微分方程和抛物线偏微分方程的新进展——调和分析与几何分析的结合
- 批准号:
20KK0057 - 财政年份:2020
- 资助金额:
$ 52.5万 - 项目类别:
Fund for the Promotion of Joint International Research (Fostering Joint International Research (B))
Determination of post-shakedown quantities with the Simplified Theory of Plastic Zones including second-order geometric effects
使用塑性区简化理论(包括二阶几何效应)确定安定后量
- 批准号:
416907346 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Research Grants
Geometric study of some higher-order topological invariants related to corners
一些与角点相关的高阶拓扑不变量的几何研究
- 批准号:
19K14545 - 财政年份:2019
- 资助金额:
$ 52.5万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Geometric Properties of Second Order Elliptic Partial Differential Equations
二阶椭圆偏微分方程的几何性质
- 批准号:
1763179 - 财政年份:2018
- 资助金额:
$ 52.5万 - 项目类别:
Standard Grant
Global / Geometric structure of solutions to elliptic PDE's via higher-order information of associated variational functionals
通过相关变分泛函的高阶信息实现椭圆偏微分方程解的全局/几何结构
- 批准号:
15H03631 - 财政年份:2015
- 资助金额:
$ 52.5万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




