Collaborative Research: Multiple Approaches to Gain Increased Capture of Carbon Dioxide
合作研究:多种方法增加二氧化碳捕获量
基本信息
- 批准号:1359636
- 负责人:
- 金额:$ 46.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-06-01 至 2017-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
One of the foremost challenges of the 21st century is to ensure food security for the world's population of over 7 billion people. Plants use the process of photosynthesis to harness the energy of sunlight to convert carbon dioxide into food and fiber that helps feed and clothe the world's population. The enzyme responsible for this process (RuBisCO) incorporates carbon dioxide into sugars, but it also incorporates oxygen into a product (glycolate) that cannot be used by the plant and therefore must be broken down and recycled; it is estimated that up to 30% of the light energy from the sun that is captured by a plant is thereby wasted. Carbon dioxide and oxygen compete for the binding site on the enzyme RuBisCO thus one way to increase plant productivity would be to raise the concentration of carbon dioxide relative to that of oxygen in the plant cell. In this collaborative research program engaging teams of researchers from the US and the United Kingdom, this goal will be addressed by engineering a biological pump, driven by sunlight, that will transport atmospheric carbon dioxide into the plant cell, concentrating and storing it there for use in photosynthesis. This project engages a large interdisciplinary team of plant biologists, biochemists, biophysicists, protein designers, chemical engineers, and mathematical modelers. This project will provide educational and training opportunities for undergraduate students, graduate students and postdoctoral researchers, all working in a highly cooperative, international scientific context. There are also provisions for public outreach, including publications, public talks, and websites geared toward the general public.Increasing the amount of carbon dioxide available for fixation in photosynthesis will be achieved with a light-driven bicarbonate pump and a scaffold to retain the carbon dioxide until it can be fixed by ribulosebisphosphate carboxylase/oxygenase (RuBisCo). This will be accomplished by introducing into chloroplasts and cyanobacteria the proteins halorhodopsin which uses light to pump chloride ions, and AE1, a chloride/bicarbonate exchanger, to achieve net light-driven bicarbonate transport. In a parallel strategy, halorhodopsin will be modified to transport bicarbonate directly as well as to utilize light outside the visible spectrum. The carbon dioxide released in the chloroplast by carbonic anhydrase needs to be retained long enough to react with RuBisCO. To accomplish this, molecular scaffolds will be designed for the delivery of carbon dioxide to RuBisCO, including a carbon dioxide sponge and an engineered reverse C4 pathway. Mathematical modeling will link theory with experiment in both the transport and scaffolding efforts. The approach of using a light-driven bicarbonate pump and a carbon dioxide scaffold/sponge has the potential to raise the partial pressure of carbon dioxide by up to 60% inside the chloroplast, thereby allowing a large increase in the ratio of carbon dioxide to oxygen fixed by RuBisCO. The consequence to the plant should be a significantly higher photosynthetic productivity in the laboratory as well as in the field.This award is supported jointly by the Cellular Dynamics and Function Cluster in the Division of Molecular and Cellular Biosciences and by the Biotechnology, Biochemical and Biomass Engineering Program in the Division of Chemical, Bioengineering, Environmental and Transport Systems.
One of the foremost challenges of the 21st century is to ensure food security for the world's population of over 7 billion people.植物利用光合作用过程,利用阳光的能量,将二氧化碳转化为食物和纤维,为世界人口提供食物和衣服。负责这一过程的酶(RuBisCO)将二氧化碳结合到糖中,但它也将氧气结合到植物无法使用的产品(乙醇酸盐)中,因此必须分解和回收; it is estimated that up to 30% of the light energy from the sun that is captured by a plant is thereby wasted.二氧化碳和氧气竞争RuBisCO酶上的结合位点,因此提高植物生产力的一种方法是提高植物细胞中二氧化碳相对于氧气的浓度。在这个由美国和英国研究人员组成的合作研究项目中,这一目标将通过设计一个由阳光驱动的生物泵来实现,该生物泵将大气中的二氧化碳输送到植物细胞中,将其浓缩并储存在那里用于光合作用。该项目涉及一个由植物生物学家、生物化学家、生物物理学家、蛋白质设计师、化学工程师和数学建模师组成的大型跨学科团队。该项目将为本科生、研究生和博士后研究人员提供教育和培训机会,他们都在高度合作的国际科学背景下工作。还有公共宣传的规定,包括面向公众的出版物、公开演讲和网站。通过光驱动的碳酸氢盐泵和支架来增加光合作用中可固定的二氧化碳量,以保留二氧化碳,直到它可以被二磷酸核酮糖羧化酶/加氧酶(RuBisCo)固定。这将通过向叶绿体和蓝细菌中引入盐视紫质蛋白和AE1(一种氯离子/碳酸氢盐交换器)来实现,盐视紫红质蛋白利用光泵送氯离子,并实现氯离子/碳酸氢盐交换器,以实现光驱动的净碳酸氢盐运输。在并行策略中,盐视紫红质将被修改为直接运输碳酸氢盐以及利用可见光谱之外的光。 The carbon dioxide released in the chloroplast by carbonic anhydrase needs to be retained long enough to react with RuBisCO.为了实现这一目标,将设计分子支架用于将二氧化碳输送到RuBisCO,包括二氧化碳海绵和工程化的反向C4途径。 Mathematical modeling will link theory with experiment in both the transport and scaffolding efforts.使用光驱动碳酸氢盐泵和二氧化碳支架/海绵的方法有可能将叶绿体内二氧化碳的分压提高高达60%,从而使RuBisCO固定的二氧化碳与氧气的比率大幅增加。植物的结果应该是在实验室和田间显着提高光合作用生产力。该奖项由分子和细胞生物科学部的细胞动力学和功能集群以及化学、生物工程、环境和运输系统部的生物技术、生物化学和生物质工程项目共同支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Cheryl Kerfeld其他文献
Is the Protein Dynamical Transition useful?
- DOI:
10.1016/j.bpj.2019.11.2866 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Akansha Sharma;Deepu K. George;Kimberly Crossen;Jeffrey McKinney;Cheryl Kerfeld;Andrea Markelz - 通讯作者:
Andrea Markelz
Evidence for colse-to-open photoactivation of orange carotenoid protein from ultraviolet resonance Raman spectroscopy
紫外共振拉曼光谱证明橙色类胡萝卜素蛋白的冷至打开光活化作用
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Yushi Nakamizo;Momoka Nagamine;Tomotsumi Fujisawa;Cheryl Kerfeld;Masashi Unno - 通讯作者:
Masashi Unno
Single-molecule studies of quenched light harvesting proteins in an anti-Brownian electrokinectic (ABEL) trap
- DOI:
10.1016/j.bpj.2023.11.1577 - 发表时间:
2024-02-08 - 期刊:
- 影响因子:
- 作者:
Ayesha Ejaz;Sigal Lechno-Yossef;Markus Sutter;Cheryl Kerfeld;Allison Squires - 通讯作者:
Allison Squires
Photoswitching of terahertz structural dynamics in the photosynthesis photoprotector orange carotenoid protein
- DOI:
10.1016/j.bpj.2021.11.695 - 发表时间:
2022-02-11 - 期刊:
- 影响因子:
- 作者:
Jeffrey A. McKinney;Yanting Deng;Deepu K. George;Robert Thompson;Cheryl Kerfeld;Tod D. Romo;Alan Grossfield;Andrea G. Markelz - 通讯作者:
Andrea G. Markelz
Evidence of Intramolecular Structural Stabilization in Light Activated State of Orange Carotenoid Protein
- DOI:
10.1016/j.bpj.2019.11.1245 - 发表时间:
2020-02-07 - 期刊:
- 影响因子:
- 作者:
Jeffrey A. McKinney;Akansha Sharma;Kimberly Crossen;Yanting Deng;Deepu K. George;Sigal Lechno-Yossef;Cheryl Kerfeld;Andrea G. Markelz - 通讯作者:
Andrea G. Markelz
Cheryl Kerfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Cheryl Kerfeld', 18)}}的其他基金
Collaborative Research: ProteoCell: The Fat-Free Cell
合作研究:ProteoCell:无脂肪细胞
- 批准号:
1935047 - 财政年份:2019
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
EAGER: Engineering synthetic organelles to power formate-based microbial cell factories
EAGER:工程合成细胞器为基于甲酸盐的微生物细胞工厂提供动力
- 批准号:
1733552 - 财政年份:2017
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Regulatory and Functional Characterization of Modular Photoprotective Proteins in the Context of Cyanobacterial Ecology and Evolution
蓝藻生态和进化背景下模块化光保护蛋白的调控和功能表征
- 批准号:
1557324 - 财政年份:2016
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Structure Determination of Photosynthetic Organelles
光合细胞器的结构测定
- 批准号:
1240590 - 财政年份:2012
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: Multiple Approaches to Gain Increased Capture of Carbon Dioxide
合作研究:多种方法增加二氧化碳捕获量
- 批准号:
1105892 - 财政年份:2011
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
EAGER: Engineering catalytic activity into the carboxysome shell
EAGER:将催化活性设计到羧基体壳中
- 批准号:
1160614 - 财政年份:2011
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Collaborative Research: Exploiting Prokaryotic Proteins to Improve Plant Photosynthetic Efficiency
合作研究:利用原核蛋白提高植物光合效率
- 批准号:
1105897 - 财政年份:2011
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: Structural, Functional, and Ecological Characterization of the Prochlorococus Carboxysome, the Ocean's Primary Molecular Module for Carbon Fixation
合作研究:原绿藻羧基体(海洋固碳的主要分子模块)的结构、功能和生态特征
- 批准号:
0851094 - 财政年份:2009
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Postdoctoral Research Fellowship in Plant Biology
植物生物学博士后研究奖学金
- 批准号:
9303641 - 财政年份:1993
- 资助金额:
$ 46.6万 - 项目类别:
Fellowship Award
相似国自然基金
Research on Quantum Field Theory without a Lagrangian Description
- 批准号:24ZR1403900
- 批准年份:2024
- 资助金额:0.0 万元
- 项目类别:省市级项目
Cell Research
- 批准号:31224802
- 批准年份:2012
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research
- 批准号:31024804
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Cell Research (细胞研究)
- 批准号:30824808
- 批准年份:2008
- 资助金额:24.0 万元
- 项目类别:专项基金项目
Research on the Rapid Growth Mechanism of KDP Crystal
- 批准号:10774081
- 批准年份:2007
- 资助金额:45.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345652 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333683 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Collaborative Research: Phenotypic and lineage diversification after key innovation(s): multiple evolutionary pathways to air-breathing in labyrinth fishes and their allies
合作研究:关键创新后的表型和谱系多样化:迷宫鱼及其盟友呼吸空气的多种进化途径
- 批准号:
2333684 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Collaborative Research: New Regression Models and Methods for Studying Multiple Categorical Responses
合作研究:研究多重分类响应的新回归模型和方法
- 批准号:
2415067 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Continuing Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312707 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345651 - 财政年份:2024
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: Plant-Inspired Growing Robots Operating in Multiple Time Scales
协作研究:在多个时间尺度上运行的植物启发种植机器人
- 批准号:
2312423 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Supporting Privacy Negotiation Among Multiple Stakeholders in Smart Environments
协作研究:SaTC:核心:小型:支持智能环境中多个利益相关者之间的隐私谈判
- 批准号:
2232656 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant
Collaborative Research: SaTC: CORE: Small: Supporting Privacy Negotiation Among Multiple Stakeholders in Smart Environments
协作研究:SaTC:核心:小型:支持智能环境中多个利益相关者之间的隐私谈判
- 批准号:
2232654 - 财政年份:2023
- 资助金额:
$ 46.6万 - 项目类别:
Standard Grant